

www.makefinalyearproject.com www.igeekstechnologies.com nanduigeeks2010@gmail.com

FINAL YEAR PROJECTS

BE, ME, B. TECH, M. TECH, MCA, BCA, B.SC,MBA

IEEE PROJECTS

ELECTRICAL PROJECTS 2023-24

CALL & WHATSAPP: +91 70192 80372

IGEEKS TECHNOLOGIES

Best project consultancy for electrical engineering students

Igeeks Technologies can offer complete project support and assistance to engineering students. With an extensive library of projects successfully completed by our electrical engineering professionals, we can inspire new ideas for electrical engineering projects for engineering students. If you are already in the middle of your project, but you are facing implementation problems, our professional can immediately step in and solve them for you. For electrical engineering students short on time and resources, our electrical engineers can design, build, successfully implement a project, and deliver it to you within a given time frame. If you still don't have an idea for your electrical engineering projects, you can check out our list of projects for electrical engineering students below for more ideas.

No electrical and electronic equipment is possible without the expertise of an electrical engineer. They design the power supply, implement the electrical and electronic components and make sure everything works as expected. There is hardly any branch of engineering that does not depend on electrical and electronic systems, and this makes an electrical engineer the most sought-after engineer in the world. With the right training, hands-on exposure and practice, every electrical engineering student becomes an electrical engineering professional with a promising career, and electrical engineering projects during graduation and post-graduation play a key role in making this possible.

Projects for Electrical Engineering Students

Being a highly technical subject with mathematical rigor, electrical engineering is one of those engineering fields where practical exposure is paramount for solid understanding. Choosing the right electrical engineering project that matches their area of interest can do wonders for their technical acumen and understanding of electrical engineering. However, just like theory, making a solid electrical project with practical application is challenging and naturally requires professional help. The difficulties begin with choosing the right wiring with sufficient practical range. Resource planning, design and successful execution is a long and arduous process that may not be possible without expert guidance from professional project consulting companies like Igeeks Technologies.

ELECTRICAL PROJECT LIST 2023-2024

EE	IEEE LATEST PROJECTS BASED ON ELECTRICALS AND ELECTRONICS (EEE)
E001	494_AUTOMATIC POWER FACTOR CONTROL
E002	471_ANDROID-GREENCHARGE MANAGING RENEWABLE ENERGY IN SMART BUILDINGS
E003	485_ALTERNATE ENERGY FROM BUSY ROAD FOR DEVELOPMENT OF SMART CITY - THERMAL &
	PIEZO
E004	484_IOT - RESIDENCE ENERGY CONTROL SYSTEM BASED ON WIRELESS SMART SOCKET AND IOT
E005	321_BIRD - SOLAR POWERED IRRIGATION WITH AUTO CONTROL OF PUMP & SMS ALERT
E006	471_GREENCHARGE MANAGING RENEWABLE ENERGY IN SMART BUILDINGS
E007	240_WIRELESS POWER THEFT, OVERVOLTAGE AND OVERLOAD MONITORING SYSTEM
E008	479_WIRELESS POWER THEFT, OVERVOLTAGE AND OVERLOAD MONITORING SYSTEM AND GEYSER
	AUTOMATION
E009	466_GSM BASED CONTROL UNIT FOR A NOVEL RECONFIGURABLE MICRO GRID ARCHITECTURE
	WITH RENEWABLE ENERGY SOURCES
E010	ZERO LABOUR - WET WASTE CRUSHER
E011	AN APPROACH BASED ON A ROBOTICS OPERATION SYSTEM FOR THE IMPLEMENTATION OF
	INTEGRATED INTELLIGENT HOUSE SERVICES SYSTEM
E012	STATE OF ART ON POSSIBILITY & OPTIMIZATION OF SOLAR PV-WIND HYBRID SYSTEM
E013	499_ISLAND - GRID CONNECTED DC DISTRIBUTED GENERATION
E014	228_IOT-HIVE HOME AUTOMATION SYSTEM FOR INTRUSION DETECTION
E015	347_IOT BASED REFRIGERATOR, STORAGE ROOM AND FMCG PRODUCTS STOCK MONITORING
	WITH EMAIL ALERT OF PURCHASE ORDER
E016	87_BLUETOOTH EMBEDDED ROBOTIC AGRICULTURE PLOWING, SEEDING AND GRASS CUTTING
	POWERED BY SOLAR ENERGY
E017	518_FARMER FRIENDLY SOLAR BASED VIRTUAL FENCING FOR RURAL AGRICULTURE WITH BATTERY
	REVERSE CHARGE PROTECTION
E018	479_IOT BASED SMART GEYSER AUTOMATION WRT ENVIRONMENT CONDITION TO SAVE
	ELECTRICITY

E019	356_ROTATING SOLAR SYSTEM FOR AUTOMOBILES WITH BOOST & CHARGE CONTROL		
E020	427_ELECTRIC LINEMAN PROTECTION USING USER CHANGEABLE PASSWORD BASED CIRCUIT		
	BREAKER		
E021	429_SUBSTATION PHASE CONTROLLER FOR AUTOMATIC LOAD SHEDDING WITH OVERLOAD		
	ALERT		
E022	431_IOT BASED UNDERGROUND CABLE FAULT DETECTION		
E023	431_UNDERGROUND CABLE FAULT DETECTION AND ALERT WITH VOICE COMMANDS USING FN-		
	M16P.		
E024	319_RENESAS BASED RENEWABLE ENERGY - 12V DC POWER GENERATION USING BACK EMF & SOLAR FOR LED LOAD		
E025	315_SOLAR POWERED HOUSE AND TRANSMITTING THE EXTRA POWER TO THE GOVERNMENT MAINS		
E026	55_SMART POWER GENERATION BY 2-AXIS CONTROLLED SOLAR PANEL AND POWER OPTIMIZATION		
E027	482_ ECSHUB - AN OFF GRID BUNK		
E028	169_TWO AXIS BASED SOLAR TRACKING FOR POWER CONSERVATION IN IRRIGATION SYSTEM		
E029	445_AUTOMATIC TRANSFORMER LOAD SHARING SYSTEM WITH SMS ALTERING		
E030	445_GSM BASED POWER SHARING OF TRANSFORMER WITH AUTOMATIC LOAD SHEDDING		
	SYSTEM		
E031	321_IOT BASED IRRIGATION SYSTEM WITH WITHOUT INTERNET AND PUMP SET CONTROL WITH		
	STATUS NOTIFICATION		
E032	333_IOT - WEB LABORATORY- REMOTE VIRTUAL LAB ACCESS WITH GRAPH GENERATION.		
E033	503_RECOS - SMART SOCKET FOR ELECTRIC VEHICLE, WASHING MACHINE, GEYSER ENERGY		
	CONTROL		
E034	504_SWACHH ABHIYAN - DOOR-TO-DOOR PICKUP OF HOUSEHOLD HAZARDOUS WASTE		
E035	POWER TRANSMISSION LINE FAILURE DETECTION		
E036	514_IEEE_EFFICIENCY IMPROVEMENT OF PHOTOVOLTAIC PANELS BY DESIGN IMPROVEMENT OF		
	COOLING SYSTEM USING WATER COOLER		

EE	IEEE LATEST PROJECTS BASED ON ELECTRICALS AND ELECTRONICS (EEE)		
IEEOO1	PREPAID ELECTRICITY BILLING AUTOMATION		
IEE002	POST PAID ELECTRICITY SYSTEM AUTOMATION WITH CARD & CARD READER		
IEE003	MANAGEMENT OF SUB-TRANSMISSION AND DISTRIBUTION SYSTEM IN POWER SYSTEM USING		
	IOT		
IEE004	IMPLEMENTATION OF SOLAR POWER AUTOMATIC BATTERY CHARGING SYSTEM FOR ELECTRIC		
	VEHICLE USING IOT		
IEE005	SOLAR TRACKING AND H- DARRIUS WIND TURBINE		
IEE006	DATA ACQUISITION FOR ELECTRICAL VEHICLE POWER SYSTEM AUTOMATION USING IOT		
IEE007	DESIGN AND EXPERIMENTAL ANALYSIS OF PFC RECTIFIERS FOR DOMESTIC INDUCTION HEATING		
	APPLICATIONS		

IEE008	SOLAR BASED DESIGN AND DEVELOPMENT OF PESTICIDE SPRAYER FOR USE IN AGRICULTURE		
	FIELDS USING IOT AND BLUE TOOTH TECHNOLOGY		
IEE009	ANALYSIS AND SIMULATION OF FLYING CAPACITOR MULTILEVEL INVERTER USING PD PWM		
	STRATEGY		
IEE010	DESIGN AND FABRICATION OF AUTOMATED SMART SOLAR GRASS CUTTER ROBOT USING WIFI AND		
	GPS TECHNOLOGY		
IEE011	HIGH GAIN STEP UP DC-DC CONVERTER FOR DC MICRO-GRID APPLICATION		
IEE012	IMPLEMENTATION OF HYBRID POWER SOURCE INVERTER		
IEE013	IMPLEMENTATION OF HYBRID POWER SOURCE USING IOT		
IEE014	DESIGN, ANALYSIS ANDIMPLEMENTATION OF NOVEL SOFT SWITCHED BRIDGELESS INTER LEAVED		
	BOOST PFC CONVERTOR		
IEE015	DESIGN AND DEVELOPMENT OF HYBRID INVERTER FOR RENEWABLE SOURCE APPLICATION		
IEE016	NATURE INSPIRED SOLAR POWER USING IOT		
IEE017	PORTABLE INTENSIVE CARE UNIT EQUIPMENT USING IOT		
IEE018	7 LEVEL INVERTER		
IEE019	TRANSFORMER LESS INVERTER		
IEE020	SOLAR BASED VARIABLE FREQUENCY DRIVE		
IEE021	HIGHWAY WINDMILL MONITORING AND CONTROLLING USING IOT		
IEE022	HIGHWAY MULTI SYSTEM (WINDMILL / SOLAR)MONITORING AND CONTROLLING USING IOT		
IEE023	IMPLEMENTATION OF STARTING AND ADVANCED PROTECTION FOR INDUCTION MOTOR		
IEE024	POWER FACTOR CORRECTION GSM METER		
IEE025	DESALINATION OF SEA WATER USING HYBRID POWER SOURCE		
IEE026	ANTENNAS AND PHOTOVOLTAIC PANELS: TOWARD A GREEN COMMUNICATION MICROWAVE		
	STATION		
IEE027	AUTOMATIC COIN BASED CELL PHONE CHARGER WITH DUAL SOLAR TRACKING SYSTEM		
IEE028	TRANSMISSION LINE MULTIPLE FAULTS DETECTION AND INDICATION TO ELECTRICITY BOARD		
IEE029	DATA ACQUISITION AND MONITORING OF SOLAR PANELS USING 2-CHANNEL DATA LOGGER AND		
	.NET APPLICATION		
IEE030	A BUCK-BOOST INTEGRATED FULL BRIDGE INVERTER FOR SOLAR PHOTOVOLTAIC BASED		
155001	STANDALONE SYSTEM		
IEE031	A NOVEL METHOD TO EXTRACT MAXIMUM POWER FROM SOLAR PANEL OF A GRID CONNECTED		
155022	PHOTOVOLTAIC SYSTEM USING PHASE ANGLE CONTROL AND HYSTERSIS CURRENT CONTROL HIGH-EFFICIENCY DC-DC CONVERTER FOR LARGE INPUT-VOLTAGE FLUCTUATIONS IN SOLAR		
IEE032	APPLICATIONS		
IEE033	IMPLEMENTATION OF A WEB OF THINGS BASED SMART GRID TO REMOTELY MONITOR AND		
ILLUJJ	CONTROL RENEWABLE ENERGY SOURCES		
IEE034	ENERBEE-EXAMPLE OF AN ADVANCED METERING INFRASTRUCTURE BASED ON ZIGBEE		
IEE035	REAL-TIME DETECTION SYSTEM FOR ELECTRICAL DISTURBANCES FOR REMOTE		
122000	COMMUNICATION STATIONS AND SMART GRID		
IEEO36	POWER FACTOR METERING SYSTEM USING ARDUINO		
IEE037	WIRELESS RESIDENTAL POWER MONITORING SYSTEM		

IEE038	USING ARDUINO DEVELOPMENT PLATFORM IN THE DIAGNOSIS OF AC ELECTRICAL MACHINES	
IEE039	BATTERY MANAGEMENT SYSTEM USING ARDUINO	
IEE040	ASYMMETRICAL TWO-PHASE INDUCTION MOTOR SPEED CONTROLLED BY MULTILEVEL INVERTER	
	EMPLOYING CASCADED TRANSFORMERS	
IEE041	DESIGN AND IMPLEMENTATION OF REAL TIME TRANSFORMER HEALTH MONITORING SYSTEM	
	USING GSM TECHNOLOGY	

IEE042	DEVELOPMENT OF EFFICIENT POWER GENERATION USING AUTOMATED RENWABLE SOURCES	
	AND AUTOMATING STREET LIGHTS ACCORDING TO TRAFFIC DENSITY	
IEE043	SOLAR TRACKING SYSTEM WITH AUTOMATIC PANEL CLEANING MECHANISM FOR EFFICIENT	
	POWER GENERATION	
IEE044	UNIVERSAL ELECTRICAL POWER GENERATION AND MULTIPURPOSE OPTIMIZATION- SOLAR, WIND	
	AND RAIN	
IEE045	TALKING ENERGY METER	
IEE046	IMPLEMENTATION OF CUK CONVERTER WITH MPPT	

EEE POWER SYSTEMS IEEE TITLES - SOLAR POWER GENERATION DOMAIN

TITLE ID	TITLE
TEMAPE209, TEMAPE210,	TWO-STAGE CONVERTER STANDALONE PV-BATTERY SYSTEM BASED ON VSG
TEMAPS589,	CONTROL
TEPGPS552,	Objective: The main objective of this project is to adjust the inverter
TEPGPE181, TEPGPE182	output and realize the maximum power of the PV scheme by using
	VSG controller.
TEMAPS577,	A NOVEL AND HIGH-GAIN SWITCHED-CAPACITOR AND SWITCHED-
TEMAPE204,	INDUCTOR-BASED DC/DC BOOST CONVERTER WITH LOW INPUT CURRENT
TEPGPS540, TEPGPE176	RIPPLE AND MITIGATED VOLTAGE STRESSES
	Objective: The main objective of this project is to obtain low input
	current ripples and mitigate the voltage stresses.
TEMAPS579,TEMAPE206,	SOLAR POWER GENERATION SYSTEM WITH POWER SMOOTHING FUNCTION
TEMAPE207,TEPGPE178,	Objective: The main objective of this project is to increase power
TEPGPE179,TEPGPS542	efficiency and smoothens power fluctuations in the Solar Power
	generation system.
TEMAPS590,TEMAPS591	FASTER CONVERGENCE CONTROLLER WITH DISTORTED GRID CONDITIONS
TEPGPS553,TEPGPS554	FOR PHOTOVOLTAIC GRID FOLLOWING INVERTER SYSTEM
	Objective: The main objective of this project is to improve power
	quality and achieve zero steady state error by using MDBHCC with PR
	controller.

TEMAPS565, TEMAED147, TEPGPS530, TEPGED141, TEMAPS583, TEMACS61, TEPGPS546, TEPGCS55	ENHANCED CONTROL AND POWER MANAGEMENT FOR A RENEWABLE ENERGY-BASED WATER PUMPING SYSTEM Objective: The main objective of this project is comprehensive dynamic analysis for a renewable energy based water pumping system.
TEMAPS580, TEMAPS581, TEMAPS582, TEPGPS543, TEPGPS544, TEPGPS545	THREE-LEVEL T-TYPE QUASI-Z SOURCE PV GRID-TIED INVERTER WITH ACTIVE POWER FILTER FUNCTIONALITY UNDER DISTORTED GRID VOLTAGE Objective: The main objective of this project is to provide the stability and good dynamic response of the grid-connected 3L-T-type qzsi.
TEMAPS614, TEMAPE223, TEPGPS577, TEPGPE195	A GENERALIZED HIGH GAIN MULTILEVEL INVERTER FOR SMALL SCALE SOLAR PHOTOVOLTAIC APPLICATIONS Objective: The main objective of this project is to increase the low voltage levels of PV panels by using high gain dc-dc converters, which are also known as front-end converters.
TEMAED88, TEMAPS453	SOLAR POWERED UNMANNED AERIAL VEHICLE WITH ACTIVE OUTPUT FILTER UNDER NON-LINEAR LOAD CONDITIONS Objective: The objective of this paper is to propose Active Output Filter system AOF reduces the size and weight of the power transmission system while significantly improving its conversion efficiency.
TEPGPS421, TEMAPS447	FUZZY LOGIC CONTROL FOR SOLAR PV FED MODULAR MULTILEVEL INVERTER TOWARDS MARINE WATER PUMPING APPLICATIONS. Objective: The main objective of this project aims to control the Induction Motor (IM) drive using intelligent techniques towards marine water pumping applications.

TEPGPS443, TEPGPS444,	IMPLEMENTATION OF FREQUENCY INTEGRATED MULTI-ORDER GENERALIZED
TEMAPS473, TEMAPS474	INTEGRATOR FOR SOLAR ENERGY SOURCED GRID
	Objective: The main objective of this project is to attenuate the higher-
	order and sub-order harmonic components from distorted load
	currents, even when the load currents are linear or nonlinear and
	balanced or unbalanced.
TEMAPS468	PV BASED SHUNT ACTIVE HARMONIC FILTER FOR POWER QUALITY
	IMPROVEMENT
	Objective: The main objective of this project is to SAHF system provides
	harmonic mitigation, power factor correction, and load compensation.
TEMAPS575,	SIMULATION AND MODELLING OF MPPT BASED PV SYSTEM CONNECTED
TEPGPS538	WITH BOOST CONVERTER
	Objective: The main objective of this project is to obtain supreme
	required amount of power from solar PV panel.

TEPGPS433, TEMAPS459	PARTIAL POWER CONVERSION AND HIGH VOLTAGE RIDE-THROUGH SCHEME FOR A PV-BATTERY BASED MULTIPORT MULTI-BUS POWER
	ROUTER. Objective: The main objective of this project is to partial power conversation and high voltage ride through for PV-battery energy storage system.
TEPGPS420,	INERTIA AND DAMPING ANALYSIS OF GRID-TIED PHOTOVOLTAIC POWER
TEMAPS446	GENERATION SYSTEM WITH DC VOLTAGE DROOP CONTROL.
	Objective: Main objective of this project aims to analyze the inertia, damping and synchronization characteristics of the Grid-Tied Photovoltaic Power Generation System with DC Voltage Droop Control.
TEPGPS440,	CONTROL OF PHOTOVOLTAIC INVERTERS FOR TRANSIENT AND VOLTAGE
TEMAPS466	STABILITY ENHANCEMENT.
	Objective: The main objective of this project is to, improve the transient stability and enhance the voltage stability of solar PV system.
TEPGPE158,TEMAPE185,	MULTI-MODE OPERATION AND CONTROL OF A Z-SOURCE VIRTUAL
TEMAPS536,TEPGPS501,	SYNCHRONOUS GENERATOR IN PV SYSTEMS
TEMAPS509,TEPGPS474	Objective: The main objective of this project is to improve the stability and track the frequency of the Power Electronic Converters.
TEPGPS472	PEAK CURRENT DETECTION STARTING BASED POSITION SENSOR LESS CONTROL OF BLDC MOTOR DRIVE FOR PV ARRAY FED IRRIGATION PUMP. Objective: The main objective of this project is to start the permanent magnet brushless direct current (PMBLDC) motor with exact commutation using position sensor less control mode.
TEMAPS546,	MINIMIZING ENERGY STORAGE UTILIZATION IN A STAND-ALONE DC
TEMAPS547,	MICROGRID USING PHOTOVOLTAIC FLEXIBLE POWER CONTROL
TEPGPS513, TEPGPS512	Objective: The main objective of this project is to regulate the DC link voltage of both BESS and PV system.
TEMAPS477	FRACTIONAL ORDER NOTCH FILTER FOR GRID-CONNECTED SOLAR PV
TEPGPS447	SYSTEM WITH POWER QUALITY IMPROVEMENT.
	Objective: The main objective of this project is to reduce the harmonics distortion, reactive power burden on the system and unbalancing of connected loads.
TEMAPS487	ADAPTIVE HYBRID GENERALIZED INTEGRATOR BASED SMO FOR SOLAR PV
	ARRAY FED ENCODER LESS PMSM DRIVEN WATER PUMP.
	Objective: The Main Objective of this Project is to increase its accuracy, reliability of the PMSM using Adaptive Hybrid Generalized Integrator Based SMO.
TEMAPS471	ENERGY MANAGEMENT STRATEGY FOR HYBRID PUMPED HYDRO PHOTO
	VOLTAIC SYSTEM FOR AGRI PURPOSE-{CONCEPT-BASED}
	Objective: The Main Objective of this Project is to design hybrid micro-

grid systems like SPV system, hydro system and grid.

TEPGPS505, TEMSPS539	DESIGN AND CONTROL OF PV-UPQC USING VARIABLE LEAKY LMS BASED ALGORITHM FOR POWER QUALITY ENHANCEMENT Objective: The Main Objective of this Project is to improve the Power quality of the system using PV-UPQC.
TEPGPS121, TEMAPS169	IMPLEMENTATION OF SOLAR PV- BATTERY AND DIESEL GENERATOR BASED ELECTRIC VEHICLE CHARGING STATION Objective: The main objective of this project is to regulate the frequency and voltage of DG set without a mechanical automatic voltage regulator.
TEMAPS406	THE NEW CONTROL SCHEME FOR THE PV AND WIND HYBRID SYSTEM CONNECTED TO THE SINGLE PHASE GRID Objective: The main objective of this project is to keep the power output constant if any variation in the input from the PV and wind system occurs, and the output voltage at the grid remains constant
TEMAPS187	VOLTAGE SAG ENHANCEMENT OF GRID CONNECTED HYBRID PV-WIND POWER SYSTEM USING BATTERY AND SMES BASED DYNAMIC VOLTAGE RESTORER Objective: The main objective of this project is to withstand and secure the effect of voltage fluctuation of grid connected hybrid PV-wind power system.
TEMAPS10, TEREPS19_10	MITIGATION OF INTER HARMONICS IN PV SYSTEMS WITH MAXIMUM POWER POINT TRACKING MODIFICATION Objective: The main objective of this project is to decrease the inter- harmonic emission level.
TEPGPS404	DESIGN OF BATTERY CHARGING CIRCUIT THROUGH MPPT USING SPV SYSTEM Objective: The main objective of this project is to design a battery charging circuit through P&O and INC MPPT using SPV system.
TEMAPS428	INTEGRATION OF SOLAR PV WITH BATTERY ENERGY STORAGE SYSTEM Objective: The main objective of this project is to design a battery charging circuit through P&O and INC MPPT using SPV system.
TEMAPS489	IMPROVED BETA PARAMETER BASED MPPT METHOD IN PHOTOVOLTAIC SYSTEM Objective: The objective of this paper is to enhance the fast tracking speed, less oscillations and dynamic behavior of the photovoltaic system with different MPPT techniques.

TEPGPS381,	A FLL-BASED CONTROL TECHNIQUE FOR GRID INTERFACED THREE PHASE PV
TEMACS25	SYSTEM
	Objective: The main objective of this project is to eliminate harmonics
	and balance currents in the circuit.
TEMAPS427,	AN IMPLEMENTATION OF SOLAR PV ARRAY BASED MULTIFUNCTIONAL EV
TEPGPS400	CHARGER
	Objective: The main objective of this paper is to achieve Unity Power
	Factor (UPF) operation and Total Harmonic Distortion (THD) of the grid
TEDODO 412	
TEPGPS413,	POWER QUALITY IMPROVEMENT OF GRID-CONNECTED PHOTOVOLTAIC
TEMAPS438	SYSTEMS USING TRANS-Z-SOURCE INVERTER UNDER PARTIAL SHADING
	Objective: The main objective of this project is to improve the power quality of on-grid Photo-Voltaic (PV) systems by implementing a new
	solar PV fed Dynamic Voltage restorer based on Trans-Z-Source
	Inverter
TEMAPS429,	LOW VOLTAGE RIDE-THROUGH CAPABILITY CONTROL FOR SINGLE-STAGE
TEPGPS402	INVERTERBASED GRID-CONNECTED PHOTOVOLTAIC POWER PLANT
	Objective: The main objective of this project is to control a strategy of
	single-stage PV power plant to enhance the LVRT capability based on
	the Malaysian standards and modern grid codes connection
	requirements.
TEPGCS21,	RECURSIVE DIGITAL FILTER BASED CONTROL FOR POWER QUALITY
TEMACS27	IMPROVEMENT OF GRID TIED SOLAR PV SYSTEM
	Objective: The main objective of this project is to eliminate harmonics
	and compensating reactive power required by the load.
	ENERGY MANAGEMENT SYSTEM FOR SMALL SCALE HYBRID WIND SOLAR
TEMAPS411, TEMAPS412,	BATTERY BASED MICRO GRID
TEPGPS378,	Objective: The main objective of this project is to balance the power
TEPGPS379	in solar wind based hybrid energy storage system.
TEPGPS140,TEPGPS141,	VOLTAGE AND CURRENT PROFILE IMPROVEMENT OF A PV-INTEGRATED
TEMAPS183,TEMAPS184	GRID SYSTEM EMPLOYING SINUSOIDAL CURRENT CONTROL STRATEGY
	BASED UNIFIED POWER QUALITY CONDITIONER
	Objective: The main objective of this paper is to regulate the load
	voltage, mitigates voltage transients, and eliminates source
	harmonics.
TEPGPS153	CONSTRUCTION AND PERFORMANCE INVESTIGATION OF THREE-PHASE
	SOLAR PV AND BATTERY ENERGY STORAGE SYSTEM INTEGRATED UPQC
	Objective: The main objective of this project is to mitigate the power
	quality problems existing in the grid and the harmonics penetrated
	by the non-linear loads. Providing power especially during the

	longer-term voltage interruption.
TEPGCS27, TEMACS33	A NEW HYBRID METHOD BASED ON FUZZY LOGIC FOR MAXIMUM POWER POINT TRACKING OF PHOTOVOLTAIC SYSTEMS Objective: the main objective of this project is to track the maximum power point of PV systems to decrease computation power requirement, while increasing the speed and efficiency of the tracking.
TEPGPS149, TEMAPS192, TEPGCS37, TEMACS43	FLEXIBLE POWER-POINT-TRACKING-BASED FREQUENCY REGULATION STRATEGY FOR PV SYSTEM Objective: the main objective of this paper is an adaptive step size tracking method is proposed to improve the output power fluctuation around the suboptimal power point.
TEPGPS187, TEMAPS226	MULTIMODE OPERATION OF SOLAR PV ARRAY, GRID, BATTERY AND DIESEL GENERATOR SET BASED EV CHARGING STATION Objective: The main objective of this paper is to provide continuous charging and uninterruptable supply to house loads. It will also regulate generator voltage and frequency, harmonic current compensation of non-linear loads and intentional reactive power compensation.
TEMAPS497, TEPGPS461, TEPGPE134	SIMULATION MODEL OF H6 TRANSFORMERLESS SINGLE PHASE FULL BRIDGE PV GRID TIED INVERTERS Objective: The main objective of this paper is to implement the safety measures of leakage currents in transformer less inverters in photovoltaic generation.
TEMAPS434, TEMAPS435	FUZZY CONTROLLER BASED GRID INTEGRATION OF HYBRID SOLAR PHOTOVOLTAIC AND DFIG WIND ENERGY SYSTEM TO IMPROVE POWER QUALITY Objective: The main objective of this project is to improve the power quality of the hybrid Photovoltaic (PV) and Doubly Fed Induction Generator (DFIG) based wind energy system.
TEPGPS194, TEMAPS233	PERFORMANCE ANALYSIS OF SOLAR PV ARRAY AND BATTERY INTEGRATED UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMS Objective: The main objective of this project is to improve the power quality at the load side and supply side and regulate load voltages while maintaining grid current sinusoidal and the power factor close to unity.
TEMAED131, TEPGED127, TEMAPS548,	VEHICLE-TO-GRID ANCILLARY SERVICES USING SOLAR POWERED ELECTRIC VEHICLE CHARGING STATIONS Objective: The main objective of this paper is to enhance the better

TEPGPS514	dynamic response of motor with less harmonic distortions and torque fluctuations.
TEGPS131,TEGPS133, TEGPS134,TEMAPS174,	SOLAR PV-BES BASED MICRO-GRID SYSTEM WITH MULTI-FUNCTIONAL VSC
TEMAPS175,TEMAPS176	Objective: The main objective of this project is maximum power extraction from a PV Array, reactive power compensation, harmonics mitigation and balancing of grid currents.
TEPGPS125,TEPGPS126,	DISTRIBUTED INCREMENTAL ADAPTIVE FILTER CONTROLLED GRID
TEPGPS127,TEPGPS128	INTERACTIVE RESIDENTIAL PHOTOVOLTAIC BATTERY BASED MICRO GRID FOR RURAL ELECTRIFICATION
	Objective: The main objective of this project is to provide continuous supply to the emergency loads, harmonics mitigation, load balancing and power factor improvement.
TEPGPS334 TEMAPS374	IMPLEMENTATION OF SOLAR PHOTOVOLTAIC SYSTEM WITH UNIVERSAL ACTIVE FILTERING CAPABILITY
	Objective: The main objective of this project is to implement the solar PV system with universal active filtering capability
TEPGPS187,	MULTIMODE OPERATION OF SOLAR PV ARRAY GRID BATTERY AND
TEMAPS226	GENERATOR SET BASED EV CHARGING STATION Objective: The main objective of this paper is to provide continuous charging and uninterruptable supply to house loads. It will also regulate generator voltage and frequency, harmonic current compensation of non-linear loads and intentional reactive power compensation.
TEPGPS408	A MULTIFUNCTIONAL SOLAR PV AND GRID BASED ON BOARD CONVERTER FOR ELECTRIC VEHICLES Objective: The main objective of this paper is to charge of plug-in electric vehicles using dual power sources (grid and solar PV).
TEPGPS409	VOLTAGE PROFILE AND POWER QUALITY IMPROVEMENT IN PV FARMS INTEGRATED MEDIUM VOLTAGE GRID USING DYNAMIC VOLTAGE RESTORER Objective: The main objective of this paper is to analyze the power quality of three phases medium voltage grid connected with distribution generation (DG) such as photovoltaic (PV) farms and its control schemes.
TEPGPE123	A NOVEL SINGLE STAGE BUCK BOOST TRANSFORMER LESS INVERTER FOR 1 PHASE GRID CONNECTED SOLAR PV SYSTEMS Objective: the main objective of this paper is to eliminate the leakage currents and track the maximum power point even under the wide variation of input PV voltage

TEPGPS145,	A MICROGRID BASED ON WIND DRIVEN DFIG, DG & SOLAR PV ARRAY FOR FUEL CONSUMPTION Objective: The main objective of this project is to control the power quality issues such as load unbalance compensation, harmonics compensation and reactive power compensation and extract the maximum power from wind.
TEMAPS04,TEMAPS03, TEREPS19_02,TEREPS19_03, TEREPS19_04,TEMAPE05, TEMAPE06 TEMAPS481, TEMAPS482, TEPGPS450, TEPGPS451	 GRID CONNECTED PV COGENERATION USING BACK TO BACK VOLTAGE SOURCE CONVERTERS Objective: The main objective of this paper is simple and efficient for a grid-connected wind-photovoltaic (PV) cogeneration system. ADAPTIVE CONTROL OF VOLTAGE SOURCE CONVERTER BASED SCHEME FOR POWER QUALITY IMPROVED GRID-INTERACTIVE SOLAR PV- BATTERY SYSTEM Objective: the main objective of this project is to improve power quality under various loading conditions with the help of adaptive learning based back propagation.
TEMSPS568 TEPGPS533	IMPROVED SMS ISLANDING DETECTION METHOD FOR GRID-CONNECTED CONVERTERS Objective: The main objective of this project is to improve the islandingdetection capability for grid connected converters.

EEE POWER SYSTEMS IEEE TITLES - WIND POWERGENERATION DOMAIN

TEMAPS565,TEMAED147,	ENHANCED CONTROL AND POWER MANAGEMENT FOR A RENEWABLE
TEPGPS530,TEPGED141,	ENERGY-BASED WATER PUMPING SYSTEM
TEMAPS583,TEMACS61,	Objective: The main objective of this project is comprehensive dynamic
TEPGPS546,TEPGCS55	analysis for a renewable energy based water pumping system.
TEMAPS595,TEMAPS596,	AN IMPROVED SLIDING MODE DIRECT POWER CONTROL STRATEGY BASED
TEPGPS558,TEPGPS559	ON REACTIVE POWER COMPENSATION FOR VIENNA RECTIFIER
	Objective: The main objective of this project is to compensate reactive
	power for Vienna rectifier by using an improved sliding mode DPC
	Controlling topology.
TEMAPS598,	MODELING OF A DROOP-CONTROLLED GRID-CONNECTED DFIG WIND
TEPGPS561	TURBINE
	Objective: The main objective of this project is to propose a linearized
	small-signal model for modelling a droop-controlled grid connected
	DFIG wind turbine.
TEMAPS597,TEMACS63,	DC BUS VOLTAGE CONTROL OF WIND POWER INVERTER BASED ON FIRST-
TEPGCS57, TEPGPS560	ORDER LADRC
	Objective: The main objective of the proposed method is to improve the

	stability of the DC side voltage of the direct-drive permanent magnet wind power grid-connected inverter by using First-Order LADRC
TEMAPS599,TEMACS64, TEPGPS562, TEPGCS58	SLIDING MODE CONTROL FOR GRID INTEGRATION OF WIND POWER SYSTEM BASED ON DIRECT DRIVE PMSG Objective: The main objective of the proposed method is to provide the dynamic performance during low/high voltage conditions.
TEMAPS443, TEPGPS417	BIDIRECTIONAL HARMONIC CURRENT CONTROL OF BRUSHLESS DOUBLY FED MOTOR DRIVE SYSTEM BASED ON A FRACTIONAL UNIDIRECTIONAL CONVERTER UNDER A WEAK GRID. Objective: The Main objective of this project is proposes the brushless doubly fed machine (BDFM) drive system based on a fractional unidirectional converter is a promising low-cost variable-speed drive system.
TEMAPS444, TEPGPS418	CONTROL OF SWITCHED RELUCTANCE GENERATOR IN WIND POWER SYSTEM APPLICATION FOR VARIABLE SPEEDS. Objective: The Main objective of this project is proposes the control of the SRG.
TEMAPS519, TEPGPS483	MODELING AND COORDINATED CONTROL DESIGN FOR BRUSHLESS DOUBLY FED INDUCTION GENERATOR-BASED WIND TURBINE TO WITHSTAND GRID VOLTAGE UNBALANCE. Objective: The main objective of the project is to eliminate unbalanced PW current, distorted CW current and oscillations of the PW active or reactive power were analyzed.
TEPGPS435, TEMAPS461	POWER AND CURRENT LIMITING CONTROL OF WIND TURBINES BASED ON PMSG UNDER UNBALANCED GRID VOLTAGE. Objective: The main objective of this project is to limit the current, power and enhance the operation of wind power system during unbalanced grid voltage conditions.
TEPGPS437	HYBRID WIND/PV/BATTERY ENERGY MANAGEMENT-BASED INTELLIGENT NON-INTEGER CONTROL FOR SMART DC-MICRO GRID OF SMART UNIVERSITY. Objective: The main objective of this project is to controlling the source-side converters (sscs) to extract the maximum power from the renewable energy sources (wind and PV) using the proposed IFO-PID.
TEMAPS411,TEMAPS412, TEPGPS378,TEPGPS379	ENERGY MANAGEMENT SYSTEM FOR SMALL SCALE HYBRID WIND SOLAR BATTERY BASED MICROGRID Objective: The main objective of this project is to balance the power in solar-wind based hybrid energy storage system.
TEMAPS565, TEMAED147, TEPGPS530, TEPGED141	ENHANCED CONTROL AND POWER MANAGEMENT FOR A RENEWABLE ENERGY-BASED WATER PUMPING SYSTEM Objective: The main objective of this project is comprehensive dynamic

analysis for a renewable energy based water pumping system

TEPGPS423,	PARAMETER ADJUSTMENT FOR THE DROOP CONTROL OPERATING A
TEMAPS449	DISCHARGE PEC IN PMG-BASED WECSS WITH GENERATOR-CHARGED BATTERY UNITS.
	Objective: Main objective of this project aims to enhance the ability of
	the PMG-based WECS and its battery storage system to meet their
	command power delivery, while ensuring the frequency and voltage
TEMAPS485,TEMAPS486,	stability at the PCC. DETECTION METHOD OF GRID VOLTAGE SAG FOR OFFSHORE WIND POWER
TEPGPS454,TEPGPS455	CONVERTER
	Objective: The main objective of this project is to find a detection
	method of grid voltage sag suitable for LVRT of offshore wind power converters.
TEMAPS615,TEPGPS578	A NOVEL APPROACH TO MAXIMIZE PERFORMANCE AND RELIABILITY OF PMSG BASED WIND TURBINE
	Objective: The main objective of this project is to maximize the
	performance and reliability of PMSG based Wind Turbine.
TEMAPS494,	ROBUST CONTROL FOR ISLANDED AND SEAMLESS MODE SWITCHING OF
TEPGPS458	WIND-PV-GRID TIED GENERATION SYSTEM.
	Objective: The main objective of this project is to improve the quality of
TEMAPS550,	generated power into the grid. DUAL MODE OPERATION OF WIND-SOLAR WITH ENERGY STORAGE BASED
TEPGPS516	MICROGRID INTEGRATED TO UTILITY GRID
	Objective: The main objective of this project is to remote village
	electrification along with the accessibility of continuous power is
	provided by the integrated operation of microgrid assisted by utility grid.
CONCEPT-BASED	LOW VOLTAGE RIDE THROUGH (LVRT) OF GRID INTERFACED WIND DRIVEN
	DFIG (USING FUZZY LOGIC)-{CONCEPT-BASED}
CONCEPT-BASED	COMPARATIVE ANALYSIS OF ENHANCING THE VOLTAGE STABILITY OF DFIG
TEN 44 DO E 00	BASED WINDFARM USING SVC & UPFC-{CONCEPT-BASED}
TEMAPS520, TEPGPS484	MAXIMUM POWER POINT TRACKING FOR WIND TURBINE USING INTEGRATED GENERATOR-RECTIFIER SYSTEMS.
111053404	Objective: The main objective of this project Deployment of the
	integrated systems in offshore wind energy, which requires maximum
	power point tracking (MPPT) capability.
TEMAED134,	ENERGY MANAGEMENT AND OPTIMIZATION OF VEHICLE-TO-GRID SYSTEMS
TEPGED130	FOR WIND POWER INTEGRATION

	Objective: The main objective of this project is to energy management between Electric Vehicle to grid system for grid power integration
TEPGPS452, TEMAPS483	SIMULATION AND MODELING OF A WIND TURBINE USING PMSG WITH MAXIMUM POWER TRACKING CONTROL Objective: The main objective of this project is modelling of the wind turbine along with the synchronous generator is primarily done which is fed to a utility with the help of a dc/dc rectifier and boost model.
TEPGPS423, TEMAPS449	PARAMETER ADJUSTMENT FOR THE DROOP CONTROL OPERATING A DISCHARGE PEC IN PMG-BASED WECSS WITH GENERATOR-CHARGED BATTERY UNITS. Objective: Main objective of this project aims to enhance the ability of the PMG-based WECS and its battery storage system to meet their command power delivery, while ensuring the frequency and voltage stability at the PCC.
TEMAPS406	THE NEW CONTROL SCHEME FOR THE PV AND WIND HYBRID SYSTEM CONNECTED TO THE SINGLE PHASE GRID Objective: The main objective of this project is to keep the power output constant if any variation in the input from the PV and wind system occurs, and the output voltage at the grid remains constant

TEMAPS187,TEMAPS188, TEPGPS144,TEPGPS145, TEPGPS146,TEMAPS189	VOLTAGE SAG ENHANCEMENT OF GRID CONNECTED HYBRID PV-WIND POWER SYSTEM USING BATTERY AND SMES BASED DYNAMIC VOLTAGE RESTORER Objective: The main objective of this project is to reduce symmetrical and asymmetrical voltage sags in the system.
TEPGPS187,TEMSPS207, TEPGCS16	COORDINATED FUZZY-BASED LOW-VOLTAGE RIDE-THROUGH CONTROL FOR PMSG WIND TURBINES AND ENERGY STORAGE SYSTEMS Objective: The main objective of this project is to enhance the LVRT response and improve the stability of the system.
TEPGPS166,TEMAPS206, TEPGCS34,TEMACS40	WIND-SPEED ESTIMATION AND SENSOR LESS CONTROL FOR SPMSG-BASED WECS USING LMI-BASED SMC Objective: The main objective of this project is eliminating the sensor requirements for measuring the wind speed, rotor speed and rotor position thereby enhancing system reliability and reducing the complexity.
TEMAPS411,TEMAPS412, TEPGPS378,TEPGPS379	ENERGY MANAGEMENT SYSTEM FOR SMALL SCALE HYBRID WIND SOLAR BATTERY BASED MICROGRID Objective: The main objective of this project is to balance the power in Solar Wind based HESS

TEPGPS159,TEPGED20, TEMAPS202,TEMAED19 TEMAPS431,	EMULATION OF WIND TURBINE SYSTEM USING VECTOR CONTROLLED INDUCTION MOTOR DRIVE Objective: The main objective of this project is using of feed-forward compensation will reduce the disturbances in the torque, owing to its poor disturbance rejection capability. MODELLING OF A WIND TURBINE WITH PERMANENT MAGNET SYNCHRONOUS
TEPGPS406	GENERATOR Objective: The main objective of this project is the implementation and simulation of a Simulink-based controlled permanent magnet synchronous generator (PMSG) wind turbine in the dq0 reference frame.
TEPGPS164, TEMAPS205	TESTING THE PERFORMANCE OF BATTERY ENERGY STORAGE IN A WIND ENERGY CONVERSION SYSTEM Objective: The main objective of this project is to regulate the errors in the net power flow and reduce the conduction losses and performs the dynamic and transient performances of the system.
TEPGPS156, TEPGPS157, TEMAPS199, TEMAPS200	DESIGN AND ANALYSIS OF GRID-INTERACTIVE DFIG BASED WECS FOR REGULATED POWER FLOW Objective: The main objective of this project is sharing of reactive power at below rated wind speeds, which essentially reduces the amount of rotor winding copper loss and maintaining the unity power stator terminals.
TEMSPS434, TEMAPS435	FUZZY CONTROLLER BASED GRID INTEGRATION OF HYBRID SOLAR PHOTOVOLTAIC AND DFIG WIND ENERGY SYSTEM TO IMPROVE POWER QUALITY Objective: The main objective of this project is to improve the power quality of the hybrid Photovoltaic (PV) and Doubly Fed Induction Generator (DFIG) based wind energy system.
TEPGED123,TEMAED123, TEMAED127,TEPGPS507, TEMAPS541	MODEL PREDICTIVE DIRECT POWER CONTROL OF DOUBLY FED INDUCTION GENERATORS UNDER BALANCED AND UNBALANCED NETWORK CONDITIONS Objective: The main objective of this project is to control the power of high performance DFIG under both balanced and balanced network.
TEPGPS410	MODELLING AND SIMULATION OF WIND TURBINE EMULATOR USING DC MOTOR Objective: The main objective of this project is to control the wind turbine behavior through current control of dc motor with a PI controller

TEPGPS175,TEPGPS176,	A MICRO GRID BASED ON WIND DRIVEN DFIG, DG & SOLAR PV ARRAY FOR
TEPGPS177,TEMAPS214,	FUEL CONSUMPTION
TEMAPS215,TEMAPS216	Objective: The main objective of this project is to control the power
	quality issues such as load unbalance compensation, harmonics

	compensation and reactive power compensation and extract the maximum power from the wind turbine.
TEMAPS483, TEPGPS452	SIMULATION & MODELLING OF A WIND TURBINE USING PMSG WITH MAXIMUM POWER TRACKING CONTROL Objective: The main objective of the project is modelling of the wind turbine along with the synchronous generator is primarily done which is fed to a utility with the help of a dc/dc rectifier and boost model.

EEE POWER S	YSTEMS IEEE TITLES - POWERQUALITY DOMAIN
TEMAPS580,TEMAPS581, TEMAPS582,TEPGPS543, TEPGPS544,TEPGPS545	THREE-LEVEL T-TYPE QUASI-Z SOURCE PV GRID-TIED INVERTER WITH ACTIVE POWER FILTER FUNCTIONALITY UNDER DISTORTED GRID VOLTAGE Objective: The main objective of this project is to provide the stability and good dynamic response of the grid-connected 3L-T-type qzsi.
TEMAPS601,TEPGPS564	A NEW TECHNIQUE IMPLEMENTED IN SYNCHRONOUS REFERENCE FRAME FOR DVR CONTROL UNDER SEVERE SAG AND SWELL CONDITIONS Objective: The main objective of this project is controlling of DVR in distribution systems under severe transient conditions.
TEMAPS590,TEMAPS591 TEPGPS553,TEPGPS554	FASTER CONVERGENCE CONTROLLER WITH DISTORTED GRID CONDITIONS FOR PHOTOVOLTAIC GRID FOLLOWING INVERTER SYSTEM Objective: The main objective of this project is to improve power quality and achieve zero steady state error by using MDBHCC with PR controller.
TEMAPS602, TEMAPE211, TEPGPS565, TEPGPE183	BIDIRECTIONAL POWER CONTROL STRATEGY FOR SUPER CAPACITOR ENERGY STORAGE SYSTEM BASED ON MMC DC-DC CONVERTER Objective: The main objective of this project is to employ a bidirectional power control strategy for Super Capacitor Energy Storage System Based on MMC DC-DC Converter.
TEMAPS595, TEMAPS596, TEPGPS558, TEPGPS559	AN IMPROVED SLIDING MODE DIRECT POWER CONTROL STRATEGY BASED ON REACTIVE POWER COMPENSATION FOR VIENNA RECTIFIER Objective: The main objective of this project is to compensate reactive power for Vienna rectifier by using an improved sliding mode DPC Controlling topology.
TEMAPS443, TEPGPS417	BIDIRECTIONAL HARMONIC CURRENT CONTROL OF BRUSHLESS DOUBLY FED MOTOR DRIVE SYSTEM BASED ON A FRACTIONAL UNIDIRECTIONAL CONVERTER UNDER A WEAK GRID. Objective: The Main objective of this project is proposes the brushless doubly fed machine (BDFM) drive system based on a fractional unidirectional converter is a promising low-cost variable-speed drive system.

TEPGPS414,	A LYAPUNOV-FUNCTION BASED CONTROLLER FOR 3-PHASE SHUNT ACTIVE
TEMAPS440	POWER FILTER AND PERFORMANCE ASSESSMENT CONSIDERING DIFFERENT
	SYSTEM SCENARIOS
	Objective: The Main objective of this project is implement the rating of
	the shunt active power filter is considerably reduced than the other two
	· · ·
	broadly employed conventional methods.
TEMAPS573,	LYAPUNOV FUNCTION BASED CONTROL STRATEGY FOR SINGLE-PHASE
TEPGPS536	GRID-CONNECTED PV SYSTEM WITH LCL-FILTER
	Objective: The main objective of this project is to improve the stability
	under changing atmospheric conditions in grid connected PV system
	with LCL filter.
TEMAPS562,	POWER QUALITY IMPROVEMENT USING FUZZY-PI CONTROLLED D-STATCOM
TEPGPS527	Objective: The main objective of this project is to improve power quality
	by using Fuzzy-PI Controlled D-STATCOM.
TEPGPE156, TEPGPS498,	CONTROL OF A THREE-PHASE POWER CONVERTER CONNECTED TO
TEMAPE183, TEMAPS532	UNBALANCED POWER GRID IN A NON-CARTESIAN OBLIQUE FRAME
	Objective: The main objective of the proposed method is, to avoid
	multiple transformations of positive and negative sequence of current,
	oscillatory terms and gives better results without overregulation.
TEPGPE158,TEMAPE185,	Multi-Mode Operation and Control of a Z-Source Virtual Synchronous
TEMAPS536,TEPGPS501,	Generator in PV Systems
TEMAPS509,TEPGPS474	Objective: The main objective of this project is to improve the stability
	and track the frequency of the Power Electronic Converters.
TEPGPS420,	Inertia and Damping Analysis of Grid-Tied Photovoltaic Power
TEMAPS446	Generation System With DC Voltage Droop Control.
	Objective: Main objective of this project aims to analyze the inertia,
	damping and synchronization characteristics of the Grid-Tied
750000404	Photovoltaic Power Generation System with DC Voltage Droop Control.
TEPGPS424,	Bidirectional Power Flow Control Integrated With Pulse and Sinusoidal-
TEMAPS40	Ripple-Current Charging Strategies for Three-Phase Grid-Tied
	Converters.
	Objective: The objective of this paper is to propose bidirectional
	charging/discharging strategies for three-phase grid-tied converters.
TEMAPS535	MODELING AND COORDINATED CONTROL DESIGN FOR BRUSHLESS DOUBLY-FED
	INDUCTION GENERATOR-BASED WIND TURBINE TO WITHSTAND GRID VOLTAGE
	UNBALANCE
	Objective: The main objective of the project is to eliminate unbalanced
	PW current, distorted CW current and oscillations of the PW active or
	reactive power were analyzed.
TEMAED88, TEMAPS453	SOLAR POWERED UNMANNED AERIAL VEHICLE WITH ACTIVE OUTPUT FILTER
	UNDER NON-LINEAR LOAD CONDITIONS

	Objective: The objective of this paper is to propose Active Output Filter system AOF reduces the size and weight of the power transmission system while significantly improving its conversion efficiency.
TEPGPS433,	PARTIAL POWER CONVERSION AND HIGH VOLTAGE RIDE-THROUGH SCHEME
TEMAPS459	FOR A PV-BATTERY BASED MULTIPORT MULTI-BUS POWER ROUTER. Objective: The main objective of this project is to partial power conversation and high voltage ride through for PV-battery energy storage system.
TEPGPS435, TEMAPS461	POWER AND CURRENT LIMITING CONTROL OF WIND TURBINES BASED ON PMSG UNDER UNBALANCED GRID VOLTAGE.
	Objective: The main objective of this project is to limit the current, power and enhance the operation of wind power system during unbalanced grid voltage conditions.
TEMAPS560,	VOLTAGE STABILITY ENHANCEMENT USING FACTS DEVICES
TEPGPS525	Objective: The main objective of this project is to enhance the voltage profile improvement in transmission systems by using FACTS DEVICES.
TEPGPS438,	Control Strategy Research of D-STATCOM Using Active Disturbance
TEMAPS464	Rejection Control Based on Total Disturbance Error Compensation Objective: The Main Objective Of This Project Is To Improve The Dynamic Tracking Response Speed And Anti-Interference Ability Of The System.
TEPGPS439,	CONTROL OF PHOTOVOLTAIC INVERTERS FOR TRANSIENT AND VOLTAGE
TEMAPS465	STABILITY ENHANCEMENT. Objective: The main objective of this project is to, improve the transient
	stability and enhance the voltage stability of solar PV system.
TEMAPS470	POWER QUALITY IMPROVEMENT WITH D-STATCOM USING COMBINED PR AND COMB FILTER- CONTROLLER
	Objective: The main objective of this project is to maintain power quality in distribution system with the help of D-STATCOM.

TEMAPS468	PV BASED SHUNT ACTIVE HARMONIC FILTER FOR POWER QUALITY
	Objective: The main objective of this project is SAHF system provides
	harmonic mitigation, power factor correction, and load compensation.
TEPGPS411,	GRID-CONNECTED INDUCTION MOTOR USING A FLOATING DC-LINK
TEMAPS467	CONVERTER UNDER UNBALANCED VOLTAGE SAG
	Objective: The main objective of this project to eliminate unbalanced
	PW current, distorted CW current and oscillations of the PW active or
	reactive power were analyzed.
TEMAPS478	SYSTEM MODELING AND STABILITY ANALYSIS OF SINGLE- PHASE
TEPGPS448	TRANSFORMER LESS UPQC INTEGRATED INPUT GRID VOLTAGE REGULATION
	Objective: The main objective of this project is to exchanging reactive

	power between the system and the grid to provide input grid voltage regulation.
TEPGPS447, TEMAPS477	FRACTIONAL ORDER NOTCH FILTER FOR GRID-CONNECTED SOLAR PV SYSTEM WITH POWER QUALITY IMPROVEMENT. Objective: The main objective of this project is to reduce the harmonics distortion, reactive power burden on the system and unbalancing of connected loads.
TEMAPS567, TEPGPS531 TEPGPS532, TEMAPS566	IMPROVED POWER QUALITY IN A SOLAR PV PLANT INTEGRATED UTILITY GRID BY EMPLOYING A NOVEL ADAPTIVE CURRENT REGULATOR Objective: The main objective of this project is to improve voltage and power quality under load changes.
CONCEPT-BASED	COMPARATIVE ANALYSIS OF ENHANCING THE VOLTAGE STABILITY OF DFIG BASED WINDFARM USING SVC & UPFC -{CONCEPT-BASED}
CONCEPT-BASED	POWER QUALITY IMPROVEMENT WITH HELP OF SRF-PI,MSRF-PI,MSRF-FLC BASED DESIGNED SAPF (CASE 1 & 2 & 3)
TEPGPS460, TEMAPS496	MITIGATION AND IMPROVEMENT OF POWER QUALITY USING SHUNT SERIES SWITCHED GRID TIED INVERTER (SSS-GTI) Objective: The main objective of this project is to improve the power quality of distributed energy sources in network associated mode and islanded mode.
TEMAPS571 TEMAPS572	SIMULATION AND MODELING OF STATCOM AND WINDFARM IN THE TRANSMISSION LINE USING MATLAB AND ANALYSIS OF BUS VOLTAGE Objective: The main objective of this project is to facilitate continuous operation of wind turbines during disturbances, stability improvement and proper reactive power compensation by using STATCOM.
TEPGPS505, TEMAPS539	DESIGN AND CONTROL OF PV-UPQC USING VARIABLE LEAKY LMS BASED ALGORITHM FOR POWER QUALITY ENHANCEMENT Objective: The main objective of this project is to improve the Power quality of the system using PV-UPQC.
TEPGPS172,TEMAPS212	A NEW PROTECTION SCHEME FOR AN SSSC IN AN MV NETWORK BY USING A VARISTOR AND THYRISTORS Objective: Main objective of this project aims to improve the reliability and flexibility of the network operation.
TEMAPS408	DESIGN OF LCL FILTER FOR THREE-PHASE INVERTER CONNECTED TO THE LOAD Objective: The main objective of this project is to design LCL filter is to remove the peak near the resonance frequency for three-phase inverter connected to the Load.
TEMAPS569 TEPGPS534	CONTROL OF GRID TIED SMART PV-DSTATCOM SYSTEM USING AN ADAPTIVE TECHNIQUE Objective: The main objective of this project is to improve the power

	quality and support the three phase AC grid by supplying power to the both grid as well as connected loads
TEPGCS18, TEMACS25,	A FLL-BASED CONTROL TECHNIQUE FOR GRID INTERFACED THREE PHASE PV SYSTEM
TEPGPS381	Objective: The main objective of this project is to eliminate harmonics, grid currents balancing and to improve the system performance during distorted grid conditions.

TEMAPS427, TEPGPS400	AN IMPLEMENTATION OF SOLAR PV ARRAY BASED MULTIFUNCTIONAL EV CHARGER
	Objective: The main objective of this paper is to achieve Unity Power Factor (UPF) operation and Total Harmonic Distortion (THD) of the grid current within 5 percent.
TEPGCS21, TEMACS27	RECURSIVE DIGITAL FILTER BASED CONTROL FOR POWER QUALITY IMPROVEMENT OF GRID TIED SOLAR PV SYSTEM Objective: The main objective of this paper is eliminating harmonics and compensating reactive power required by the load and control the load unbalancing, voltage sag, voltage distortion, voltage swell and changing solar irradiation conditions.
TEPGPS140, TEPGPS141, TEMAPS183, TEMAPS184	VOLTAGE AND CURRENT PROFILE IMPROVEMENT OF A PV-INTEGRATED GRID SYSTEM EMPLOYING SINUSOIDAL CURRENT CONTROL STRATEGY BASED UNIFIED POWER QUALITY CONDITIONER Objective: The main objective of this paper is to regulate the load voltage, mitigate voltage transients, eliminates source current harmonics.
TEPGPS174, TEMAPS213	A NEW CONTROL STRATEGY FOR THREE-PHASE SHUNT ACTIVE POWER FILTERS BASED ON FIR PREDICTION Objective: The main objective of this paper is to a new discrete-time control strategy for Three-Phase Three-Wire Shunt Active Power Filters (APF).
TEMAPS430, TEPGPS405	DESIGN OF ADAPTIVE CONTROLLER FOR REGULATING THE VOLTAGE BY A DYNAMIC VOLTAGE RESTORER DVR Objective: The main objective of this project is the low quality problems of power equipping; the modifier of voltage source could be connected by transmission lines serial, which put as compensators.
TEPGPS153	CONSTRUCTION AND PERFORMANCE INVESTIGATION OF THREE-PHASE SOLAR PV AND BATTERY ENERGY STORAGE SYSTEM INTEGRATED UPQC Objective: Main objective of this project is to mitigate the power quality problems existing in the grid and the harmonics penetrated by the non-linear loads. Providing power especially during the longer-term voltage interruption.

TEDODE70	
TEPGPE70,	CASCADED MULTILEVEL PV INVERTER WITH IMPROVED HARMONIC
TEMAPE84	PERFORMANCE DURING POWER IMBALANCE BETWEEN POWER CELLS
	Objective: The main objective of this project is to mitigate voltage and
	current distortions by injecting power with lower voltage from the
	shaded cells without altering the PV voltage.
TEPGPS509,	POWER QUALITY IMPROVEMENT OF GRID-CONNECTED PHOTOVOLTAIC
TEPGPS508,	SYSTEMS USING TRANS-Z-SOURCE INVERTER UNDER PARTIAL SHADING
TEMAPS543,	CONDITION
TEMAPS542	Objective: The main objective of this project is to improve the power
	quality to reduce the total harmonic distortion and to reduce voltage
	stress across the switches.
	A NOVEL IUPQC FOR MULTI-FEEDER SYSTEMS USING MULTILEVEL
TEPGPS184,	
TEMAPS223	CONVERTERS WITH GRID INTEGRATION OF HYBRID RENEWABLE ENERGY
	SYSTEM
	Objective: The main objective of this project is to compensate the
	sag/swell and current/voltage harmonics
TEPGPS182,	POWER QUALITY ENHANCEMENT IN A GRID-CONNECTED HYBRID SYSTEM
TEMAPS221,	WITH COORDINATED PQ THEORY & FRACTIONAL ORDER PID CONTROLLER IN
TEPGCS29,	DPFC
TEMACS35	Objective: The main objective of this project is to new FACTS-based
	distributed power flow controller (DPFC) that incorporates a
	coordinated PQ theory and a FOPID controller is proposed to mitigate
	the power quality issues.
TEPGPS307	POWER QUALITY ENHANCEMENT FOR A GRID CONNECTED WIND TURBINE
	ENERGY SYSTEM
	Objective: The main objective of this project is to enhance the power
	quality for a grid connected wind turbine energy system.
TEPGPS129, TEPGPS130,	Grid Connected PV System with Reactive Power Compensation for the
TEMAPS172,TEMAPS173	Grid
	Objective: The main objective of this project is to design of grid
	connected solar inverters to perform the unity power factor, which can
	produce active power only.
TEMAPS433	A NOVEL TRANSFORMER LESS HYBRID SERIES ACTIVE FILTER
	Objective: The main objective of this project is to connect a Novel
	transformer less Hybrid series active filter to the grid without requiring a
	costly series injection transformer.
TEPGPS156,	DESIGN AND ANALYSIS OF GRID-INTERACTIVE DFIG BASED WECS FOR
TEPGPS157,	REGULATED POWER FLOW
TEMAPS199,	Objective: The main objective of this project is sharing of reactive power
TEMAPS200	at below rated wind speeds, which essentially reduces the amount of
	rotor winding copper loss and maintaining the unity power at stator
	terminals.

TEMAPS434,FUZZY CONTROLLER BASED GRID INTEGRATION OF HYBRID SOLARTEMSPS435PHOTOVOLTAIC AND DFIG WIND ENERGY SYSTEM TO IMPROVE POWERQUALITYObjective: The main objective of this project is to improve the powerquality of the hybrid Photovoltaic (PV) and Doubly Fed InductionGenerator (DFIG) based wind energy system.TEPGPS194,TEMAPS233UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMSObjective: The main objective of this project is to improve the powerquality at the load side and supply side and regulate load voltagewhile maintaining grid ourset sinusoidal and the power factor close to
quality of the hybrid Photovoltaic (PV) and Doubly Fed Induction Generator (DFIG) based wind energy system.TEPGPS194, TEMAPS233PERFORMANCE ANALYSIS OF SOLAR PV ARRAY AND BATTERY INTEGRATED UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMS Objective: The main objective of this project is to improve the power quality at the load side and supply side and regulate load voltage
TEPGPS194,PERFORMANCE ANALYSIS OF SOLAR PV ARRAY AND BATTERY INTEGRATEDTEMAPS233UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMSObjective: The main objective of this project is to improve the powerquality at the load side and supply side and regulate load voltage
TEMAPS233UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMS Objective: The main objective of this project is to improve the power quality at the load side and supply side and regulate load voltage
quality at the load side and supply side and regulate load voltage
while maintaining grid current sinusoidal and the power factor close to unity.
TEPGPS185, POWER QUALITY IMPROVEMENT USING DYNAMIC VOLTAGE RESTORER
TEMAPS224 Objective: The main objective of this project is to enhance the powe quality using Dynamic Voltage Restorer.
TEPGED28, VARIABLE SPEED OPERATION OF BRUSHLESS DOUBLY-FED RELUCTANC
TEMAED27 MACHINE DRIVE USING MODEL PREDICTIVE CURRENT CONTROL TECHNIQUE
Objective: The main objective of this project is to avoid the hection
tuning of PI controller gains, increase bandwidth of operating region
and improve the dynamic and steady state performance of the drive
system.
TEPGPS363 AN INDUCTIVE HYBRID UPQC FOR POWER QUALITY MANAGEMENT II PREMIUM-POWER-SUPPLY-REQUIRED APPLICATIONS
Objective: The main objective of this project is perform grid voltage
regulation, load harmonic current suppression and reactive powe
compensation.
TEPGPS131, TEPGPS132, SOLAR PV-BES BASED MICRO-GRID SYSTEM WITH MULTI-FUNCTIONAL VSC
TEPGPS133,TEMAPS174, Objective: The main objective of this project is Maximum powe
TEMAPS175,TEMAPS176 extraction from a PV array, reactive power compensation, harmonic
mitigation and balancing of grid currents.
TEPGPS125, DISTRIBUTED INCREMENTAL ADAPTIVE FILTER CONTROLLED GRID INTERACTIV
TEPGPS126, RESIDENTIAL PHOTOVOLTAIC-BATTERY BASED MICRO-GRID FOR RURA
TEPGPS127, ELECTRIFICATION
TEPGPS128 Objective: The main objective of this project is to provide continuou
supply to the emergency loads, harmonics mitigation, load balancing
and power quality improvement.
TEPGPS147, TEPGPS148, POWER FLOW CONTROL OF HYBRID MICRO-GRIDS USING MODIFIED UIPC
TEMAPS191,TEMAPS190 Objective: The main objective of this project is to control the exchange
of power between AC-DC Microgrids
NOVEL DYNAMIC VOLTAGE RESTORER WITH MULTI-FUNCTIONAL CAPABILITY
Objective: The main objective of this project is maintaining good Powe
TEMAPS555, Quality and un- interrupted power are extremely important goals a

TEPGPS521	many type of facilities at the present scenario.
TEPGPS187, TEMAPS226	MULTIMODE OPERATION OF SOLAR PV ARRAY GRID BATTERY AND GENERATOR SET BASED EV CHARGING STATION Objective: The main objective of this project is to provide continuous charging and uninterruptable supply to the household loads. It will also regulate generator voltage and frequency, harmonics current compensation of non-linear loads and intentional reactive power compensation.
TEPGPS408	A MULTIFUNCTIONAL SOLAR PV AND GRID BASED ON BOARD CONVERTER FOR ELECTRIC VEHICLES Objective: The main objective of this project is to charging of plug-in electric vehicles (pevs) using dual power sources (grid and solar pv).
TEMAPS430, TEPGPS405	DESIGN OF ADAPTIVE CONTROLLER FOR REGULATING THE VOLTAGE BY A DYNAMIC VOLTAGE RESTORER DVR Objective: The main objective of this project is the low quality problems of power equipping; the modifier of voltage source could be connected by transmission lines serial, which put as compensators.
TEMAPS436	D-STATCOM FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION POWER SYSTEM USING MATLAB SIMULINK Objective: The main objective of this project is to improve the power quality in distribution system.
TEMAPS437	DESIGN AND SIMULATION OF HYBRID POWER FILTERS TO PROVIDE HARMONIC COMPENSATION AT THE AC MAINS CONNECTED TO CRITICAL NON-LINEAR LOADS Objective: The main objective of this project is test three phase power system performance under nonlinear loads with help of difference types of filters (Active & passive Filters)
TEPGPS411	HYBRID ENERGY STORAGE SYSTEM CONTROL ANALOGOUS TO POWER QUALITY ENHANCEMENT OPERATION OF INTERLINKING CONVERTERS Objective: The main objective of this project is to enhance the power quality in grid-connected system by using ESS.
TEMAPS481,TEMSPS482, TEPGPS482,TEPGPS450, TEPGPS451	ADAPTIVE CONTROL OF VOLTAGE SOURCE CONVERTER BASED SCHEME FOR POWER QUALITY IMPROVED GRID-INTERACTIVE SOLAR PV- BATTERY SYSTEM Objective: The main objective of this project is to improve power quality under various loading conditions with the help of adaptive learning based back propagation.

EEE POWER SYSTEMS IEEE TITLES - DISTRIBUTION SYSTEM DOMAIN

TEMAPS580, TEMAPS581,	THREE-LEVEL T-TYPE QUASI-Z SOURCE PV GRID-TIED INVERTER WITH
TEMAPS582, TEPGPS543,	ACTIVE POWER FILTER FUNCTIONALITY UNDER DISTORTED GRID VOLTAGE
TEPGPS544, TEPGPS545	Objective: The main objective of this project is to provide the stability
	and good dynamic response of the grid-connected 3L-T-type qzsi.
TEMAPS605, TEMACS65,	POWER AND CURRENT LIMITING STRATEGY BASED ON DROOP CONTROLLER
TEPGPS568, TEPGCS59	WITH FLOATING CHARACTERISTIC FOR GRID-CONNECTED DISTRIBUTED
	GENERATION
	Objective: The main objective of this project is to improve the
	performance of grid connected distribution generations by employing
	power and current limiting strategy.

EEE POWER SYSTEMS IEEE TITLES - HYBRID POWER GENERATION				
DOMAIN				
TEMAPS608, TEMAPS609,	ENERGY MANAGEMENT STRATEGY OF AC/DC HYBRID MICROGRID BASED ON			
TEMAPE213, TEPGPS571, TEPGPS572,TEPGPE185	SOLID-STATE TRANSFORMER Objective: The main objective of this project is to avoid the voltage			
TEPOP3372,TEPOPEI03	fluctuation and power mismatch by using AC/DC hybrid microgrid based on solid-state transformer.			
TEMAPS610, TEPGPS573	PERFORMANCE IMPROVEMENT OF GRID INTERFACED HYBRID SYSTEM USING DISTRIBUTED POWER FLOW CONTROLLER OPTIMIZATION TECHNIQUES Objective: The main objective of this project is to improve the reliability, power quality, and transient stability of a hybrid system by using Distributed Power Flow Controller Optimization Techniques.			

EEE POWER SYSTEMS IEEE TITLES – HYBRID SYSTEMS DOMAIN				
TEPGPS415,	A MODEL PREDICTIVE CONTROL METHOD FOR HYBRID ENERGY STORAGE			
TEMSPS441	SYSTEMS			
	Objective: The main objective of this project is proposes a model			
	predictive control (MPC) method to control three-level bidirectional			
	DC/DC converters for grid-connections to a HESS in a DC microgrid.			
TEMAPS559,	DESIGN CONSIDERATION AND PERFORMANCE ANALYSIS OF A HYBRID			
TEPGPS524	ISLANDING DETECTION METHOD COMBINING VOLTAGE UNBALANCE/TOTAL			
	HARMONIC DISTORTION AND BILATERAL REACTIVE POWER VARIATION			
	Objective: The main objective of this project is to propose a hybrid			
	islanding detection method for inverter-based distributed generation			
	units.			

TEPGPS47, TEMAPS453	SOLAR POWERED UNMANNED AERIAL VEHICLE WITH ACTIVE OUTPUT FILTER UNDER NON-LINEAR LOAD CONDITIONS			
	Objective: The objective of this paper is to propose Active Output F system AOF reduces the size and weight of the power transmise system while significantly improving its conversion efficiency.			
TEPGPS41, TEMAPS457	PARTIAL POWER CONVERSION AND HIGH VOLTAGE RIDE-THROUGH SCHEME FOR A PV-BATTERY BASED MULTIPORT MULTI-BUS POWER ROUTER. Objective: The main objective of this project is to partial power conversation and high voltage ride through for PV-battery energy storage system.			
TEPGPS464, TEMAPS499	STABILITY EVALUATION OF AC/DC HYBRID MICROGRIDS CONSIDERING BIDIRECTIONAL POWER FLOW THROUGH THE INTERLINKING CONVERTERS. Objective: The objective of this paper is power flow direction on the small-signal stability of islanded droop-based hmgs.			
TEMAPS471	ENERGY MANAGEMENT STRATEGY FOR HYBRID PUMPED HYDRO PHOTO VOLTAIC SYSTEM FOR AGRI PURPOSE-{CONCEPT-BASED} Objective: The Main Objective of this Project is to design hybrid micro- grid systems like SPV system, hydro system and grid.			
TEPGPS457	ROBUST CONTROL FOR ISLANDED AND SEAMLESS MODE SWITCHING O WIND-PV-GRID TIED GENERATION SYSTEM. Objective: The main objective of this project is to improve the quality of generated power into the grid.			
TEMAPS550, TEPGPS516	DUAL MODE OPERATION OF WIND-SOLAR WITH ENERGY STORAGE BASED MICROGRID INTEGRATED TO UTILITY GRID Objective: The main objective of this project is to remote village electrification along with the accessibility of continuous power is provided by the integrated operation of microgrid assisted by utility grid.			
CONCEPT-BASED	MULTI-PORT DC-AC CONVERTER WITH HELP OF BATTERY AND SOLAR			
TEMAPE158, TEMAPE159, TEPGPE130, TEPGPE131	MULTI-PORT DC-AC CONVERTER WITH DIFFERENTIAL POWER PROCESSING DC-DC CONVERTER AND FLEXIBLE POWER CONTROL FOR BATTERY ESS INTEGRATED PV SYSTEMS Objective: The main objective of this project is to sustain the continuous			
	power supply to the loads, energy storage systems (ESS), such as batteries, are usually integrated with PV systems.			
TEMAPS558, TEPGPS523	DESIGN AND MODELING OF HYBRID DC/AC MICROGRID WITH MANIFOLD RENEWABLE ENERGY SOURCES Objective: The main objective of this project is to extract maximum power from the solar, wind and tidal waves at varying conditions.			
TEMAPS561, TEPGPS526	DESIGN OF MICROGRID USING HYBRID ENERGY SOURCE FOR REMOTE LOCATION APPLICATION			

	Objective: The main objective of this project is to eradicate the usage			
	of fossils and to attain the power management in the micro-g system.			
TEPGPS437,	HYBRID WIND/PV/BATTERY ENERGY MANAGEMENT-BASED INTELLIGENT			
TEMAPS462	NON-INTEGER CONTROL FOR SMART DC-MICRO GRID OF SMART			
	UNIVERSITY			
	Objective: The main objective of this project is to controlling the			
	source-side converters (sscs) to extract the maximum power from the			
TEMAPS469	renewable energy sources (wind and PV) using the proposed IFO-PID. NANO GRID TECHNIQUES FOR FARMING RELIABLE & RESIDENTIAL GRID			
TEMAP3409	Objective: The main objective of this project is to maintain power			
	management in Nano-grid.			
TEPGPS122, TEMAPS168	IMPLEMENTATION OF SOLAR PV- BATTERY AND DIESEL GENERATOR BASED			
	ELECTRIC VEHICLE CHARGING STATION			
	Objective: The main objective of this project is to regulate the frequency			
	and voltage of DG set without a mechanical automatic voltage			
	regulator.			
TEMAPS406	THE NEW CONTROL SCHEME FOR THE PV AND WIND HYBRID SYSTEM			
	CONNECTED TO THE SINGLE PHASE GRID			
	Objective: The main objective of this project is to keep the power output			
	constant if any variation in the input from the PV and wind system occurs, and the output voltage at the grid remains constant			
TEMAPS187	VOLTAGE SAG ENHANCEMENT OF GRID CONNECTED HYBRID PV-WIND			
	POWER SYSTEM USING BATTERY AND SMES BASED DYNAMIC VOLTAGE			
	RESTORER			
	Objective: The main objective of this project is to withstand and secure			
	the effect of voltage fluctuation of grid connected hybrid PV-wind			
	power system.			
TEMAPS411,TEMAPS412,	ENERGY MANAGEMENT SYSTEM FOR SMALL SCALE HYBRID WIND SOLAR			
TEPGPS378,TEPGPS379	BATTERY BASED MICROGRID			
	Objective: The main objective of this project is to obtain the reliability			
	and balance the power in the Hybrid Wind Solar Battery Based			
TEPGPS510,TEPGPS511,	Microgrid OPERATION OF HYBRID AC-DC MICROGRID WITH AN INTERLINKING			
TEMAPS545,TEMAPS544	CONVERTER			
	Objective: The main objective of this project is to the power quality of			
	power sharing in both AC and DC sub grids.			
TEMAPS432	DEVELOPMENT OF A HYBRID ENERGY STORAGE SYSTEM (HESS) FOR			
	ELECTRIC AND HYBRID ELECTRIC VEHICLES			
	Objective: The main objective of this project is to examine the feasibility			
	and capability of a Hybrid Energy Storage System (HESS), composed of			
	battery and ultra-capacitor units, through simulation.			

TEPGPS187, TEMAPS226	MULTIMODE OPERATION OF SOLAR PV ARRAY, GRID, BATTERY AND DIESEL GENERATOR SET BASED EV CHARGING STATION Objective: The main objective of this project is to provide continuous charging and uninterruptable supply to the household loads. It will also regulate generator voltage and frequency, harmonics current compensation of non-linear loads and intentional reactive power compensation.	
TEMSPS434, TEMAPS435	FUZZY CONTROLLER BASED GRID INTEGRATION OF HYBRID SOLAR PHOTOVOLTAIC AND DFIG WIND ENERGY SYSTEM TO IMPROVE POWER QUALITY Objective: The main objective of this project is to improve the power quality of the hybrid Photovoltaic (PV) and Doubly Fed Induction Generator (DFIG) based wind energy system.	
TEPGPS175,TEPGPS176, TEPGPS177,TEMAPS214, TEMAPS215,TEMAPS216	A MICROGRID BASED ON WIND DRIVEN DFIG,DG & SOLAR PV ARRAY FOR FUEL CONSUMPTION Objective: The main objective of this project is to control the power quality issues such as load unbalance compensation, harmonics compensation and reactive power compensation and extract the maximum power from the wind turbine.	

EEE POWER SYSTEMS IEEE TITLES - MICROGRIDS DOMAIN			
TEMAPS611,TEMAPE214, TEPGPS574,TEPGPE186	CONTROL AND MANAGEMENT OF RAILWAY SYSTEM CONNECTED TO MICROGRID STATIONS Objective: The main objective of this project is to propose techno- economic method for the energy storage by using Super capacitors in the train.		
TEMAPS546,TEMAPS547, TEPGPS513,TEPGPS512	MINIMIZING ENERGY STORAGE UTILIZATION IN A STAND-ALONE DC MICROGRID USING PHOTOVOLTAIC FLEXIBLE POWER CONTROL Objective: The main objective of this project is to regulate the DC link voltage of both BESS and PV system.		
TEPGPE168,TEPGPS519 TEMAPS553,TEMAPE194	POWER FACTOR COMPENSATION FOR A SINGLE-PHASE AC-DC HYBRID MICRO-GRID Objective: The main objective of this project is to power flow control strategy of a single-phase AC-DC Hybrid Microgrid		
TEMAPE164, TEMAPS479	RESEARCH ON THE CONTROL STRATEGY OF AC/DC INTERLINKING CONVERTERS IN ISLANDED HYBRID MICROGRID Objective: The main objective of this project is to maintain AC bus frequency and DC bus voltage stability and power bidirectional transmission.		

TEDODC 440	MODELLING AND FALLET PROTECTION ANALYSIS OF A DO MICROCRID LISING			
TEPGPS449,	MODELLING AND FAULT PROTECTION ANALYSIS OF A DC MICROGRID USING			
TEPGPE133	VOLTAGE SOURCE CONVERTER (VSC)			
	Objective: The main objective of this project is to power electronic			
	devices like GTO to increase switch time. After designing a suitable error			
TEMAPS411, TEMAPS412,	ENERGY MANAGEMENT SYSTEM FOR SMALL SCALE HYBRID WIND SOLAR			
TEPGPS378,TEPGPS379	BATTERY BASED MICROGRID			
	Objective: The main objective of this project is to balance the power in			
	solar-wind based hybrid energy storage system.			
TEMAPE154	SIMULATION AND FAULT DETECTION TECHNIQUES FOR MULTILEVEL			
	INVERTERS USED IN SMART GRIDS			
	Objective: The main objective of this project is to a number of			
	intelligent control systems for electricity generation as well as			
	increasing the system's energy efficiency.			
TEMAPS574, TEPGPS537	DYNAMIC AND TRANSIENT STATE ANALYSIS OF ISLANDED MICROGRID			
	Objective: The main objective of the proposed method is to implement			
	microgrid with the help of renewable energy sources and testing the			
	performance of the system under dynamic and transient states.			
TEPGPS335	DESIGN AND CONTROL OF MICRO-GRID FED BY RENEWABLE ENERGY			
TEMAPS375	GENERATING SOURCES			
	Objective: The main objective of this project is to design and control of			
	Micro-Grid fed by Renewable Energy Generating Sources			
TEMAPS492,	CONTROL OF SOLAR BATTERY STORAGE BASED MICRO GRID			
TEPGPS456	Objective: The main objective of this project is to eradicate the			
	utilization of fossil fuels and to promote the usage of renewable energy			
	resources, which are attaining more interest.			
TEPGPS403	GROUND FAULT ANALYSIS IN A MICROGRID SCENARIO			
	Objective: The main objective of this project is to analyze the ground			
	fault in a scenario of micro-grid.			
TEPGPS401	ESTIMATED DROOP CONTROL FOR PARALLEL CONNECTED VOLTAGE SOURCE			
	INVERTERS			
	Objective: The main objective of this project is to currently inverters with			
	different design techniques are being used as an interface between RES			
	and main utility grid.			
TEPGPS194,	PERFORMANCE ANALYSIS OF SOLAR PV ARRAY AND BATTERY INTEGRATED			
TEMAPS233	UNIFIED POWER QUALITY CONDITIONER FOR MICROGRID SYSTEMS			
	Objective: The main objective of this project is to improve the power			
	quality at the load side and supply side and regulate load voltages			
	while maintaining grid current sinusoidal and the power factor close to			
	unity.			

TEPGPS510,TEPGPS511,	OPERATION OF HYBRID AC-DC MICRO GRID WITH AN INTERLINKING				
TEMAPS545,TEMAPS544	CONVERTER				
	Objective: The main objective of this project is to the power quality of				
	power sharing in both AC and DC sub grids.				
TEGPS131, TEGPS133,	SOLAR PV-BES BASED MICRO-GRID SYSTEM WITH MULTI-FUNCTIONAL VSC				
TEGPS134, TEMAPS174,	Objective: The main objective of this project is maximum power				
TEMAPS175,TEMAPS176	extraction from a PV Array, reactive power compensation, harmonics				
	mitigation and balancing of grid currents.				
TEPGPS407	A MODIFIED Q -V DROOP CONTROL FOR ACCURATE REACTIVE POWER				
	SHARING IN DISTRIBUTED GENERATION MICROGRID				
	Objective: The main objective of this project is to reactive power sharing				
	between dgs.				
TEPGPS125,TEPGPS126,	DISTRIBUTED INCREMENTAL ADAPTIVE FILTER CONTROLLED GRID				
TEPGPS127, TEPGPS128	INTERACTIVE RESIDENTIAL PHOTOVOLTAIC-BATTERY BASED MICRO-GRID				
	FOR RURAL ELECTRIFICATION				
	Objective: The main objective of this project is to provide continuous				
	supply to the emergency loads, harmonics mitigation, load balancing				
	and power factor improvement.				
TEMAPS426,	AN ISLANDING DETECTION BASED ON DROOP CHARACTERISTIC FOR				
TEPGPS398	VIRTUAL SYNCHRONOUS GENERATOR				
	Objective: The main objective of this project is to realize the stable and				
	autonomous operation of micro-grids using the virtual synchronous				
	generator (VSG) concept under planned grid reconfigurations.				
TEPGPS374,	AN ADAPTIVE POWER OSCILLATION DAMPING CONTROLLER FOR A HYBRID				
TEPGPS375	AC/DC MICRO GRID				
	Objective: The main objective of this project is able to adjust the ga				
	based on the frequency deviation and the ability to handle more r				
	linearity in the system dynamics				
TEPGPS399	POWER MANAGEMENT STRATEGY BASED ON ADAPTIVE NEURO FUZZY				
	INFERENCE SYSTEM FOR AC MICROGRID				
	Objective: The main objective of this project is to achieve MG power				
	balance, decrease DG fossil fuel to minimum consumption and keep				
	the MG voltage stability and finally tracking the maximum power point				
	(MPP) of each RER.				
TEPGPE55,	A UNIVERSAL CONTROLLER UNDER DIFFERENT OPERATING STATE FOR				
TEMAPE67	PARALLEL INVERTER WITH SEAMLESS TRANSFER CAPABILITY				
	Objective: The main objective of this project is to implement a universal				
	controller to operate parallel inverters in both grid-connected (GC)				
	state and standalone (SA) state and to ensure seamless transfe				
	between them without reconfiguring the control structure.				
TEMAPS484,	A NOVEL THREE-PHASE CLLC RESONANT DC-DC CONVERTER IN DC				
· · · ·					

TEPGPS453	MICROGRIDS
	Objective: The main objective of this project is to achieve bidirectional
	power transmission between the DC microgrid and Electric-Vehicle.
TEPGPE56,	CASCADED DROOP AND INVERSE DROOP REGULATION FOR TWO-LAYER
TEMAPE68	COORDINATED POWER FLOW CONTROL IN SERIES-CONNECTED POWER
	CELLS
	Objective: The main objective of this project is to obtain the flexible
	power regulation in a fully voltage control manner.

EEE CONTROL S	YSTEMS IEEE TITLES - CONTROL SYSTEMS DOMAIN	
TEMAPS599,TEMACS64, TEPGPS562,TEPGCS58	SLIDING MODE CONTROL FOR GRID INTEGRATION OF WIND POWER SYSTEM BASED ON DIRECT DRIVE PMSG Objective: The main objective of this project is to provide the dynamic performance during low/high voltage conditions.	
TEMAPS605,TEMACS65, TEPGPS568,TEPGCS59	POWER AND CURRENT LIMITING STRATEGY BASED ON DROOP CONTROLLER WITH FLOATING CHARACTERISTIC FOR GRID-CONNECTED DISTRIBUTED GENERATION Objective: The main objective of this project is to improve the performance of grid connected distribution generations by employing power and current limiting strategy.	
TEMAPS565,TEMAED147, TEPGPS530,TEPGED141, TEMAPS583,TEMACS61, TEPGPS546,TEPGCS55	ENHANCED CONTROL AND POWER MANAGEMENT FOR A RENEWABLE ENERGY-BASED WATER PUMPING SYSTEM Objective: The main objective of this project is comprehensive dynamic analysis for a renewable energy based water pumping system.	
TEMAPS597,TEMACS63, TEPGCS57,TEPGPS560	DC BUS VOLTAGE CONTROL OF WIND POWER INVERTER BASED ON FIRST- ORDER LADRC Objective: The main objective of this project is to improve the stability of the DC side voltage of the direct-drive permanent magnet wind power grid-connected inverter by using First-Order LADRC.	
TEMACS67,	DESIGN AND CASCADE PI CONTROLLER-BASED ROBUST MODEL REFERENCE	
TEMAPE217, TEPGCS61, TEPGPE189	ADAPTIVE CONTROL OF DC-DC BOOST CONVERTER Objective: The main objective of this project is to track the desired signals and regulate the plant process variables in the most beneficial and optimized way without delay and overshoot.	
TEMACS60	APPLICATION OF PID CONTROLLER IN CONTROLLING REFRIGERATOR TEMPERATURE Objective: The main objective of this project is to analyze and compare the performance between PID Controller and ON-OFF Controller in maintaining the inner temperature of the refrigerator	
	APPLIANCES MODELING AND SIMULATION: A VIRTUAL PLATFORM APPLIED FOR	

TEMAPS407	ARC FAULT TESTING Objective: The main objective of this paper is to calculate current and line voltage for the development of an arc fault detector.
TEPGCS50	ADAPTIVE AND FUZZY PI CONTROLLERS DESIGN FOR FREQUENCY REGULATION OF ISOLATED MICROGRID INTEGRATED WITH ELECTRIC VEHICLES Objective: The main objective of this paper is the development of electric vehicles and renewable energy sources are to build a sustainable and green power system.
TEMSCS54	MODELLING AND CONTROLLER DESIGN FOR TEMPERATURE CONTROL OF POWER PLANT HEAT EXCHANGER Objective: The main objective of this paper is to is produce sustain wide range of temperature and pressure.
TEPGCS27, TEMACS33	A NEW HYBRID METHOD BASED ON FUZZY LOGIC FOR MAXIMUM POWER POINT TRACKING OF PHOTOVOLTAIC SYSTEMS Objective: The main objective of this paper is to track the maximum power point of PV to decrease computation power requirement, while increasing the speed and efficiency of the tracking.
TEMACS55	DYNAMIC STABILITY ENHANCEMENT OF POWER SYSTEM USING FUZZY LOGIC BASED POWER SYSTEM STABILIZER Objective: The main objective of this paper is to improve the Dynamic Stability of Power System using Fuzzy Logic Based Power System Stabilizer.
TEMSCS56	USE OF THE GENETIC ALGORITHM BASED FUZZY LOGIC CONTROLLER FOR LOAD FREQUENCY CONTROL IN A TWO AREA INTER CONNECTED POWER SYSTEM Objective: The main objective of this paper is to control the load frequency of power systems.
TEMACS57	MODEL PREDICTIVE CONTROL FOR FREQUENCY CONTROL OF SINGLE AREA NETWORK OF POWER SYSTEM {CONCEPT-BASED} Objective: The main objective of this paper is to achieve a similar control effect with the reduced torque ripple.

	EEE POWER ELECTRONICS IEEE TITLES	
S.NO	TITLE	DOMAIN
TEMAPE209,TEMAPE21	TWO-STAGE CONVERTER STANDALONE PV-BATTERY SYSTEM	DC – AC
0,	BASED ON VSG CONTROL	CONVERTE
TEMAPS589,TEPGPS5	Objective: The main objective of this project is to adjust the	RS
52,	inverter output and realize the maximum power of the PV	
TEPGPE181,TEPGPE182	scheme by using VSG controller.	
TEMAPE225,	A UNIFIED ACTIVE DAMPING FOR GRID AND CONVERTER CURRENT	AC-DC

TEPGPE197	FEEDBACK IN ACTIVE FRONT END CONVERTERS Objective: The main objective of this project is to reduce the switching harmonics and improve the system performance.	CONVERTE RS
TEMAPS579,TEMAPE2 06, TEMAPE207,TEPGPE17 8, TEPGPE179,TEPGPS54 2	SOLAR POWER GENERATION SYSTEM WITH POWER SMOOTHING FUNCTION Objective: The main objective of this project is to increase power efficiency and smoothens power fluctuations in the Solar Power generation system.	AC-DC CONVERTE RS
TEMAPE220,TEPGPE19 2	MODELING AND CONTROL OF SINGLE-STAGE QUADRATIC-BOOST SPLIT SOURCE INVERTERS Objective: The main objective of this project is to develop the recently proposed Spilt-Source Inverter (SSI) topology for improving its boosting characteristics.	DC – AC CONVERTE RS
CONCEPT-BASED	MULTI-PORT DC-AC CONVERTER WITH HELP OF BATTERY AND SOLAR	DC – AC CONVERTE RS
TEMAPS469	NANO GRID TECHNIQUES FOR FARMING RELIABLE & RESIDENTIAL GRID Objective: The main objective of this project is to maintain power management in Nano-grid.	DC – AC CONVERTE RS
TEMAPS462	HYBRID WIND/PV/BATTERY ENERGY MANAGEMENT-BASED INTELLIGENT NON-INTEGER CONTROL FOR SMART DC- MICROGRID OF SMART UNIVERSITY Objective: The main objective of this project is to controlling the source-side converters (sscs) to extract the maximum power from the renewable energy sources (wind and PV) using the proposed IFO-PID.	DC – AC CONVERTE RS
TEPGPE156, TEPGPS498, TEMAPE183, TEMAPS532	CONTROL OF A THREE-PHASE POWER CONVERTER CONNECTED TO UNBALANCED POWER GRID IN A NON-CARTESIAN OBLIQUE FRAME Objective: The main objective of the proposed method is, to avoid multiple transformations of positive and negative sequence of current, oscillatory terms and gives better results without overregulation.	DC – AC CONVERTE RS
TEMAPE158,TEMAPE15 9, TEPGPE130,TEPGPE131	MULTI-PORT DC-AC CONVERTER WITH DIFFERENTIAL POWER PROCESSING DC-DC CONVERTER AND FLEXIBLE POWER CONTROL FOR BATTERY ESS INTEGRATED PV SYSTEMS Objective: The main objective of this project is to sustain the continuous power supply to the loads, energy storage systems (ESS), such as batteries, are usually integrated with PV systems.	DC – AC CONVERTE RS

TEMAPE175 TEPGPE145	ADVANCED PET CONTROL FOR VOLTAGE SAGS UNBALANCED CONDITIONS USING PHASE-INDEPENDENT VSC RECTIFICATION Objective: The main objective of this project is to eliminate the harmonics balancing the currents and maintain the unity power factor	DC – AC CONVERTE RS
TEPGPS443, TEPGPS444, TEMAPS473, TEMAPS474	IMPLEMENTATION OF FREQUENCY INTEGRATED MULTI ORDER GENERALIZED INTEGRATOR FOR SOLAR ENERGY SOURCED GRID Objective: The main objective of this project is to attenuate the higher-order and sub-order harmonic components from distorted load currents, even when the load currents are linear or nonlinear and balanced or unbalanced.	DC – AC CONVERTE RS
TEPGPE146	HIGHLY RELIABLE SINGLE-PHASE AC TO THREE-PHASE AC CONVERTER WITH A SMALL LINK CAPACITOR Objective: The main objective of this project is highly reliable single-phase ac to three phase ac converter with a small link capacitor	DC – AC CONVERTE RS
TEMAPS499	STABILITY EVALUATION OF AC/DC HYBRID MICROGRIDS CONSIDERING BIDIRECTIONAL POWER FLOW THROUGH THE INTERLINKING CONVERTERS Objective: The objective of this paper is power flow direction on the small-signal stability of islanded droop-based hmgs.	DC – AC CONVERTE RS
TEPGPE135, TEPGPE152, TEMAPE166, TEMAPE180	A SINGLE PHASE, SINGLE STAGE AC-DC MULTILEVEL LLC RESONANT CONVERTER WITH POWER FACTOR CORRECTION Objective: The main objective of this project is that converter uses bridgeless rectification scheme for better efficiency and the power factor.	DC – AC CONVERTE RS
TEMAPE156	A NEW THREE-PHASE MULTILEVEL DC-LINK INVERTER TOPOLOGY WITH REDUCED SWITCH COUNT FOR PHOTOVOLTAIC APPLICATIONS Objective: The main objective of this project is to a new MLI topology with reduced number of switches for photovoltaic applications.	DC – AC CONVERTE RS
TEPGPE62, TEMAPE74	MULTIFUNCTION CONTROL STRATEGY FOR SINGLE-PHASE AC/DC POWER CONVERSION SYSTEMS WITH VOLTAGE SENSOR LESS POWER DECOUPLING FUNCTION Objective: The main objective of this project is to a novel voltage-sensor less controller for single-phase AC/DC power conversion systems with self-adaptive power decoupling function.	DC – AC CONVERTE RS
TEMAPE157	ADAPTIVE RESONANT ENERGY REALIZATION IN FB -ZCS-DC CONVERTER CIRCUIT USING DUAL CAPACITOR CIRCUIT Objective: The main objective of this project is to improve	DC – AC CONVERTE RS

	efficiency, power density, reduced switching noise and EMI	
TEMAPE56	etc Over hard switched converters. A NOVEL SINGLE STAGE BUCK BOOST TRANSFORMER LESS INVERTER FOR 1 PHASE GRID CONNECTED SOLAR PV SYSTEMS Objective: the main objective of this paper is to eliminate the leakage currents and track the maximum power point even under the wide variation of input PV voltage.	DC – AC CONVERTE RS
TEMAPS04,TEMAPS03, TEREPS19_02,TEREPS1 9_03,TEREPS19_04,TE MAPE05,TEMAPE06	GRID CONNECTED PV COGENERATION USING BACK TO BACK VOLTAGE SOURCE CONVERTERS Objective: The main objective of this paper is simple and efficient for a grid-connected wind-photovoltaic (PV) cogeneration system.	DC – AC CONVERTE RS
TEMAPE155	Z-SOURCE INVERTER Objective: The main objective of this paper is an impedance- source power converter and its control method for implementing dc-to-ac, ac-to-dc, ac-to-ac, and dc-to-dc power conversion.	DC – AC CONVERTE RS
TEMAPS602,TEMAPE21 1, TEPGPS565,TEPGPE18 3	BIDIRECTIONAL POWER CONTROL STRATEGY FOR SUPER CAPACITOR ENERGY STORAGE SYSTEM BASED ON MMC DC-DC CONVERTER Objective: The main objective of this project is to employ a bidirectional power control strategy for Super Capacitor Energy Storage System Based on MMC DC-DC Converter.	DC-DC CONVERTE RS
TEMAPS577, TEMAPE204, TEPGPS540, TEPGPE176	A NOVEL AND HIGH-GAIN SWITCHED-CAPACITOR AND SWITCHED-INDUCTOR-BASED DC/DC BOOST CONVERTER WITH LOW INPUT CURRENT RIPPLE AND MITIGATED VOLTAGE STRESSES Objective: The main objective of this project is to obtain low input current ripples and mitigate the voltage stresses.	DC-DC CONVERTE RS
TEMAPS611, TEMAPE214, TEPGPS574, TEPGPE186	CONTROL AND MANAGEMENT OF RAILWAY SYSTEM CONNECTED TO MICROGRID STATIONS Objective: The main objective of this project is to propose techno-economic method for the energy storage by using Super capacitors in the train.	DC-DC CONVERTE RS
TEMAPE224, TEPGPE196	HIGH EFFICIENCY AND VOLTAGE CONVERSION RATIO BIDIRECTIONAL ISOLATED DC-DC CONVERTER FOR ENERGY STORAGE SYSTEM Objective: The main objective of this project is to attain high efficiency and voltage conversion ratio of a bidirectional isolated dc-dc converter for energy storage system.	DC-DC CONVERTE RS
TEMAPS579,TEMAPE2 06,	SOLAR POWER GENERATION SYSTEM WITH POWER SMOOTHING	DC-DC CONVERTE

TEMAPE207,TEPGPE17 8, TEPGPE179,TEPGPS54 2	Objective: The main objective of this project is to increase power efficiency and smoothens power fluctuations in the Solar Power generation system.	RS
TEMACS67,TEMAPE217 , TEPGCS61,TEPGPE189	DESIGN AND CASCADE PI CONTROLLER-BASED ROBUST MODEL REFERENCE ADAPTIVE CONTROL OF DC-DC BOOST CONVERTER Objective: The main objective of this project is to track the desired signals and regulate the plant process variables in the most beneficial and optimized way without delay and overshoot.	DC-DC CONVERTE RS
TEMAPE209,TEMAPE21 0, TEMAPS589,TEPGPS5 52, TEPGPE181,TEPGPE182	TWO-STAGE CONVERTER STANDALONE PV-BATTERY SYSTEM BASED ON VSG CONTROL Objective: The main objective of this project is to adjust the inverter output and realize the maximum power of the PV scheme by using VSG controller.	DC-DC CONVERTE RS
TEMAPE203	HIGH STEP-UP FULL BRIDGE DC-DC CONVERTER WITH MULTI-CELL DIODE-CAPACITOR NETWORK Objective: The main objective of the proposed method is to avoid inrush current issue and achieves almost zero output voltage ripples which reducing the inductance in output LC filter.	DC-DC CONVERTE RS
TEMAPE201 TEPGPE174	A LOSSLESS TURN-ON SNUBBER FOR REDUCING DIODE REVERSE RECOVERY LOSSES IN BIDIRECTIONAL BUCK/BOOST CONVERTER Objective: The main objective of this project is to introducing a reducing diode reverse recovery loss in bidirectional buck boost converter	DC-DC CONVERTE RS
TEMAPE146, TEPGPE122	ANALYSIS, MODELING AND IMPLEMENTATION OF A SWITCHING BI- DIRECTIONAL BUCK-BOOST CONVERTER BASED ON ELECTRIC VEHICLE HYBRID ENERGY STORAGE FOR V2G SYSTEM Objective: The main objective of this paper is to improve the stability of the hybrid energy storage system.	DC – DC CONVERTE RS
TEPGPE68, TEMAPE82	A NOVEL CASCADED CONTROL TO IMPROVE STABILITY AND INERTIA OF PARALLEL BUCK-BOOST CONVERTERS IN DC MICROGRID Objective: The main objective of this paper is a control strategy for dual-source buck buck-boost fused converter (DSBBFC), utilizing two inputs of different dc levels.	DC – DC CONVERTE RS
TEPGPE65, TEMAPE78	REACTIVE POWER OPTIMIZATION CONTROL FOR BIDIRECTIONAL DUAL-TANK RESONANT DC-DC CONVERTERS FOR FUEL CELLS SYSTEMS Objective: The main objective of this paper is to provide a new control scheme for reactive power optimization at a given	DC – DC CONVERTE RS

	active power output.	
TEMAPS608,TEMAPS6	ENERGY MANAGEMENT STRATEGY OF AC/DC HYBRID MICRO GRID	AC-DC
09,	BASED ON SOLID-STATE TRANSFORMER	CONVERTE
TEMAPE213,	Objective: The main objective of the proposed method is to	RS
TEPGPS571,	avoid the voltage fluctuation and power mismatch by using	
TEPGPS572,TEPGPE18	AC/DC hybrid microgrid based on solid-state transformer.	
5		
TEPGPE168,TEPGPS519	POWER FACTOR COMPENSATION FOR A SINGLE-PHASE AC-DC	AC-DC
TEMAPS553,TEMAPE19	HYBRID MICRO-GRID	CONVERTE
4	Objective: The main objective of this project is to power flow	RS
	control strategy of a single-phase AC-DC Hybrid Microgrid	

EEE POWER ELECTRONICS IEEE TITLES – MULTILEVEL INVERTERS	
	DOMAIN
TEMAPS614,TEMAPE223, TEPGPS577,TEPGPE195	A GENERALIZED HIGH GAIN MULTILEVEL INVERTER FOR SMALL SCALE SOLAR PHOTOVOLTAIC APPLICATIONS Objective: The main objective of this project is to increase the low voltage levels of PV panels by using high gain dc-dc converters, which are also known as front-end converters.
TEMAPE219, TEPGPE191	A NEW SINGLE-SOURCE NINE-LEVEL QUADRUPLE BOOST INVERTER (NQBI) FOR PV APPLICATION Objective: The main objective of this project is to evaluate the performance of the nine-level quadruple boost inverter (NQBI) topology.
TEPGPE135,TEPGPE152, TEMAPE166,TEMAPE180	A SINGLE PHASE, SINGLE STAGE AC-DC MULTILEVEL LLC RESONANT CONVERTER WITH POWER FACTOR CORRECTION Objective: The main objective of this project is that converter uses bridgeless rectification scheme for better efficiency and the power factor.
TEMAPE154	SIMULATION AND FAULT DETECTION TECHNIQUES FOR MULTILEVEL INVERTERS USED IN SMART GRIDS Objective: The main objective of this project is to a number of intelligent control systems for electricity generation as well as increasing the system's energy efficiency.
	FUZZY LOGIC CONTROL FOR SOLAR PV FED MODULAR MULTILEVEL INVERTER TOWARDS MARINE WATER PUMPING APPLICATIONS Objective: The main objective of this project aims to control the Induction Motor (IM) drive using intelligent techniques towards marine water pumping applications.
TEPGPS442, TEMAPS472	HIGH REACTIVE POWER COMPENSATION ACCURACY FOR CASCADED H- BRIDGE INVERTER BASED DECOUPLING FEED-FORWARD CURRENT VECTOR CONTROLLER

	Objective: The main objective of this project is to define a control scheme and its transfer function in order to achieve low switching frequency and high-bandwidth power control of MCHI.
TEMAPE154	SIMULATION AND FAULT DETECTION TECHNIQUES FOR MULTILEVEL INVERTERS USED IN SMART GRIDS Objective: The main objective of this paper is to a number of intelligent control systems for electricity generation as well as increasing the system's energy efficiency.
TEMAPS497, TEPGPS461, TEPGPE134	SIMULATION MODEL OF H6 TRANSFORMER LESS SINGLE PHASE FULL BRIDGE PV GRID TIED INVERTERS Objective: The main objective of this paper is to implement the safety measures of leakage currents in transformer less inverters in photovoltaic generation.
TEPGED125,TEPGPE167, TEMAED129,TEMAPE193	A FAULT TOLERANT FIVE-LEVEL INVERTER TOPOLOGY WITH REDUCED COMPONENT COUNT FOR OPEN-END IM DRIVES Objective: The main objective of this paper is to tolerate the faults and reduce the components count to run the drive applications without any interruptions.
TEPGPE127	SOLAR PV AND BATTERY STORAGE INTEGRATION USING A NEW CONFIGURATION OF A THREE-LEVEL NPC INVERTER WITH ADVANCED CONTROL STRATEGY Objective: The main objective of this paper is the novel configuration of a three-level neutral-point-clamped (NPC) inverter that can integrate solar photovoltaic (PV) with battery storage in a grid-connected system.
TEPGPE128	NOVEL CIRCUIT AND METHOD FOR FAULT RECONFIGURATION IN CASCADED H-BRIDGE MULTI-LEVEL INVERTERS Objective: The main objective of this paper is to use for fault reconfiguration in Cascaded H _ Bridge Multilevel Inverters
TEPGPE129	A NOVEL ASYMMETRICAL 21-LEVEL INVERTER FOR SOLAR PV ENERGY SYSTEM WITH REDUCED SWITCH COUNT Objective: The main objective of this paper is to presents a novel asymmetrical 21-level multilevel inverter topology for solar PV application.

EEE ELECTRICAL DRIVES IEEE TITLES - AC DRIVES DOMAIN	
TEMACS69,	SLIDING MODE PREDICTIVE CURRENT CONTROL OF PERMANENT MAGNET
TEMAED154,	SYNCHRONOUS MOTOR WITH CASCADED VARIABLE RATE SLIDING MODE
TEPGCS63,	SPEED CONTROLLER
TEPGED148	Objective: The main objective of this project is to propose a sliding mode
	control scheme for a direct-drive PMSG based wind energy conversion
	system.

TEMAED155,	TORQUE RIPPLE REDUCTION FOR BLDC PERMANENT MAGNET MOTOR DRIVE
TEPGED149	USING DC-LINK VOLTAGE AND CURRENT MODULATION
	Objective: The main objective of this project is to reduce the torque ripple
	and improve the performance of the system by using DC-link voltage and current modulation.
TEMAPS565,TEMAED147,	
TEPGPS530,TEPGED141,	ENERGY-BASED WATER PUMPING SYSTEM
TEMAPS583,TEMACS61,	Objective: The main objective of this Project Is Comprehensive Dynamic
TEPGPS546,TEPGCS55	Analysis For A Renewable Energy Based Water Pumping System.
TEPGED87,	BIDIRECTIONAL HARMONIC CURRENT CONTROL OF BRUSHLESS DOUBLY FED
TEMAED84	MOTOR DRIVE SYSTEM BASED ON A FRACTIONAL UNIDIRECTIONAL
	CONVERTER UNDER A WEAK GRID.
	Objective: The Main objective of this project is proposes the brushless
	doubly fed machine (BDFM) drive system based on a fractional
	unidirectional converter is a promising low-cost variable-speed drive
	system.
TEPGED88,	COMBINED SPEED AND CURRENT TERMINAL SLIDING MODE CONTROL WITH
TEMAED85	NONLINEAR DISTURBANCE OBSERVER FOR PMSM DRIVE.
	Objective: Main objective of this project aims to achieve the speed and
	current stabilizing control for a PMSM drive under different nonlinear
	disturbances.
TEMAPS565,	ENHANCED CONTROL AND POWER MANAGEMENT FOR A RENEWABLE
TEMAED147,	ENERGY-BASED WATER PUMPING SYSTEM
TEPGPS530,	Objective: The main objective of this project is comprehensive dynamic
TEPGED141	analysis for a renewable energy based water pumping system GRID-CONNECTED INDUCTION MOTOR USING A FLOATING DC-LINK
TEPGPS441, TEMAPS467	CONVERTER UNDER UNBALANCED VOLTAGE SAG.
TEWIAF 3407	Objective: The main objective of the project is to eliminate unbalanced
	PW current, distorted CW current and oscillations of the PW active or
	reactive power were analyzed.
TEMAED97	INTEGRATED AC TO AC CONVERTERS FOR SINGLE-PHASE INPUT TO TWO-
	PHASE OUTPUT MOTOR DRIVES
	Objective: The main objective of the project is an integrated ac/ac
	converter with a single-phase input and a two-phase output which
	reduces the switch count to six is proposed
TEMAED108.	SPEED CONTROL FOR SRM DRIVE SYSTEM BASED ON SWITCHING VARIABLE
TEPGED108	PROPORTIONAL DESATURATION PI REGULATOR
	Objective: The main objective of the project is superior in tracking
	performance, anti-disturbance performance and speed range.
TEMAED126,	ADAPTIVE SLIDING-MODE-BASED SPEED CONTROL IN FINITE CONTROL SET
TEPGED122	MODEL PREDICTIVE TORQUE CONTROL FOR INDUCTION MOTORS

	Objective: The main objective of the project is to improve the robustness of the Finite Control Set Model Predictive Torque Control for Induction Motors.
TEMAED122, TEPGED118	A NEW Δ-MRAS METHOD FOR MOTOR SPEED ESTIMATION Objective: The main objective of the project is to estimate the motor
	speed by utilizing the per-phase motor equivalent circuit.
TEMAED94, TEPGED96	ADAPTIVE HYBRID GENERALIZED INTEGRATOR BASED SMO FOR SOLAR PV ARRAY FED ENCODER LESS PMSM DRIVEN WATER PUMP.
	Objective: The Main Objective of this Project is to increase its accuracy, reliability of the PMSM using Adaptive Hybrid Generalized Integrator Based SMO.
TEMAED96	HIGH PERFORMANCE RELUCTANCE SYNCHRONOUS MOTOR DRIVE USING FIELD ORIENTED CONTROL
	Objective: The Main Objective of this Project is to improve the performance of Reluctance Synchronous Motors (RSM) using Field Oriented Control.
TEMAED128,	IMPROVED NON-SINGULAR FAST TERMINAL SLIDING MODE CONTROL WITH
TEPGED124	DISTURBANCE OBSERVER FOR PMSM DRIVES Objective: The Main Objective of this Project is to suppress the chattering phenomenon and improve tracking performance of the conventional non-singular fast terminal sliding mode control (NFTSMC).
TEMAED109	AN IMPROVED TECHNIQUE FOR ENERGY-EFFICIENT STARTING AND OPERATING
TEPGED109	CONTROL OF SINGLE PHASE INDUCTION MOTORS Objective: The Main Objective of this Project is to enable the symmetrical and balanced operation of SPIM at all the operating points over the entire speed-range to improve its performance.
TEMAED123,	REAL-TIME IMPLEMENTATION OF EXTENDED KALMAN FILTER OBSERVER WITH
TEPGED119	IMPROVED SPEED ESTIMATION FOR SENSORLESS CONTROL Objective: The Main Objective of this Project is an investigation of on Improved Extended Kalman Filter (IEKF) to improve the IM sensorless control in motion control applications.
TEMAED100 TEPGED100	AN ENHANCED LINEAR ACTIVE DISTURBANCE REJECTION CONTROLLER FOR HIGH PERFORMANCE PMBLDCM DRIVE CONSIDERING IRON LOSS
TEPGEDIOU	Objective: The Main Objective of this Project is The proposed algorithm
	involves an estimation of the total disturbance that aims to reduce design and execution complexity, particularly in the higher-order model.
TEMAED104 TEPGED104	CURRENT AND SPEED SENSOR FAULT DIAGNOSIS METHOD APPLIED TO INDUCTION MOTOR DRIVE
	Objective: The Main Objective of this Project A simple control algorithm has been adopted to budget the power flow between the input sources. Finally, the operation of this converter has been verified through a low

	voltage prototype model.
	MODEL PREDICTIVE CONTROL-BASED DIRECT TORQUE CONTROL FOR MATRIX
TEMAED126,	
TEPGED122	CONVERTER-FED INDUCTION MOTOR WITH REDUCED TORQUE RIPPLE
	Objective: The Main Objective of this Project is to achieve a similar control
	effect with the reduced torque ripple.
TEMAED138, EMAED139,	SENSOR LESS PREDICTIVE CONTROL OF SPMSM DRIVEN LIGHT EV DRIVE USING
TEPGED132, TEPGED133,	MODIFIED SPEED ADAPTIVE SUPER TWISTING SLIDING MODE OBSERVER WITH
TEPGED25, TEMAED24	MAF-PLL
	Objective: The Main Objective of this Project is to improve the reliability
	and reduce the cost of an Electric Vehicle for achieving a smooth and
	successful wide speed range using sensorless control.
TEMAED142, TEMACS59,	DEVELOPMENT OF DOUBLE CLOSED LOOP VECTOR CONTROL USING MODEL
TEPGED136, TEPGCS53	PREDICTIVE CONTROL FOR PERMANENT MAGNET SYNCHRONOUS MOTOR
	Objective: The Main Objective of this Project is to get better dynamic
	response by tracking the current and resisting the load disturbance.
TEPGPS472	PEAK CURRENT DETECTION STARTING BASED POSITION SENSOR LESS
	CONTROL OF BLDC MOTOR DRIVE FOR PV ARRAY FED IRRIGATION PUMP.
	Objective: The main objective of this project is to start the permanent
	magnet brushless direct current (PMBLDC) motor with exact
	commutation using position sensor less control mode.
TEMAED145	DIRECT INSTANTANEOUS TORQUE CONTROL OF THE SWITCHED RELUCTANCE
TEPGED139	MOTOR FOR ELECTRIC VEHICLES APPLICATIONS USING FUZZY LOGIC
	CONTROL
	Objective: The main objective of this project is to improve the motor
	performance and reduce the torque ripples compared to other
	techniques such as Direct Instantaneous Torque Control
	A NOVEL DC-LINK VOLTAGE FEEDBACK ACTIVE DAMPING CONTROL METHOD
TEMAED101	
TEPGED101	FOR IPMSM DRIVES WITH SMALL DC-LINK CAPACITORS
	Objective: The main objective of this project is to reduce the digital
	control delay and improve the damping current precision.
TEPGPS497	ANALYSIS OF FRACTIONAL ORDER SLIDING MODE CONTROL IN A D-STATCOM
TEMAPS537	INTEGRATED POWER DISTRIBUTION SYSTEM
TEPGPS463	Objective: To reduce total harmonic distortion (THD) and voltage
TEMAPS498	unbalance factor (VUF) of the grid voltage due to disturbances like the
	voltage fluctuations.
TEPGED40,TEMAED38	PASSIVITY-BASED MODEL PREDICTIVE CONTROL OF THREE-LEVEL INVERTER-
	FED INDUCTION MOTOR
	Objective: The main objective of this paper is to improving the
	robustness under the condition of unavoidable measuring noises and
	parameter variation as well as reducing the computational burden.
TEMAPS405,TEMAED72,	SENSOR LESS FIELD ORIENTED SMCC BASED INTEGRAL SLIDING MODE FOR

TEPGPS373,TEPGED76	SOLAR PV BASED INDUCTION MOTOR DRIVE FOR WATER PUMPING
	Objective: The main objective of this paper is to regulate the DC link
	voltage, induction motor power and speed of the motor.
TEMAED75,	HYSTERESIS CONTROLLED QUASI Z-SOURCEINVERTER FED INDUCTION
TEPGED75	MOTORDRIVESYSTEM WITH ENHANCED RESPONSE
	Objective: The main objective of this paper is to develop-a-closed-loop-
	controlled-QZSI-fed induction-motor-framework that provides a steady-
	rotor-speed.
TEMAED74,	STATOR RESISTANCE ESTIMATION USING DC INJECTION WITH REDUCED
TEPGED78	TORQUE RIPPLE IN INDUCTION MOTOR SENSOR LESS DRIVES
	Objective: The main objective of this paper is to reduce torque ripples in
	the induction motor.
TEMAED73,	DESIGN AND ANALYSIS OF ELECTRICAL BRAKING TORQUE LIMIT TRAJECTORY
TEPGED77	FOR REGENERATIVE BRAKING IN ELECTRIC VEHICLES WITH PMSM DRIVE
	SYSTEMS
	Objective: The main objective of this paper is to improve the regenerative
	braking of electric vehicles based on a regenerative power analysis, an
	electrical braking torque limit trajectory is proposed
TEPGED25,	SENSOR LESS PREDICTIVE CURRENT CONTROL OF PMSM EV DRIVE USING
TENAED24	DSOGI-FLL BASED SLIDING MODE OBSERVER
	Objective: The main objective of this paper is to eliminate lower order
	harmonics, DC offset, saturation, a sliding mode observer (SMO) with a
	dual second order generalized integrator frequency locked loop is
	proposed for a surface mounted Permanent Magnet Synchronous Motor
	(PMSM) based electric vehicle (EV) drive.
TEPGED115,	AN EFFECTIVE PREDICTIVE TORQUE CONTROL SCHEME FOR PMSM DRIVE
TEMAED119	WITHOUT INVOLVEMENT OF WEIGHTING FACTORS
	Objective: The main objective of this paper is eliminating the weighting
	factors in Predictive Torque Control (PTC) method for two-level Voltage
	Source Inverter (VSI) fed Permanent Magnet Synchronous Motor.
TEMAED144,	MODELLING AND SIMULATION OF SWITCHED RELUCTANCE GENERATOR FOR
TEPGED138	AIRCRAFT POWER SYSTEMS
	Objective: The main objective of this project is to modulate and simulate
	the Switched Reluctance Generator for aircraft applications.
TEMAED79,	SENSOR LESS CONTROL FOR FIVE-PHASE IPMSM DRIVES BY INJECTING HF
TEPGED83	SQUARE-WAVE VOLTAGE SIGNAL INTO THIRD HARMONIC SPACE
	Objective: The main objective of this paper is to obtain further fault-
	tolerance, a new high frequency (HF) signal-injection-based sensorless
	control strategy for five-phase IPMSM drives.
TEPGPS151,TEPGED19, TEMAPS195,TEMAED18	SINGLE STAGE AUTONOMOUS SOLAR WATER PUMPING SYSTEM USING PMSM DRIVE
TEIVIAE 3190, TEIVIAEDIO	

	Objective: The main objective of this paper is to improve the torque response of the system, fast maximum power point tracking (MPPT) and eliminates the need of intermediate stage DC-DC converter.
TEMAED130,	AN APPROACH TOWARDS EXTREME FAST CHARGING STATION POWER
TEPGED126	DELIVERY FOR ELECTRIC VEHICLES WITH PARTIAL POWER PROCESSING
	Objective: The main objective of this paper is to eliminate redundant
	power conversion by making use of partial power rated dc-dc
	converters to charge the individual evs.
TEPGPS159,TEPGED20,	EMULATION OF WIND TURBINE SYSTEM USING VECTORCONTROLLED
TEMAPS202,TEMAED19	INDUCTION MOTOR DRIVE
	Objective: The main objective of this paper is using of feed forward
	compensation will reduce the disturbances in the torque, owing to its
	poor disturbance rejection capability
TEPGPE57,	CONTROL FOR POWER CONVERTER OF SMALL-SCALE SWITCHED
TEMAPE69	RELUCTANCE WIND POWER GENERATOR
	Objective: The main objective of this paper is to improve the utilization
	efficiency of small-scale wind power generation, by proposing a step
	control scheme.
TEMBMA3149,	PROTECTION OF THREE PHASE INDUCTION MOTOR USING EMBEDDED SYSTEM
TEMAED80	Objective: The main objective of this paper is to protect the three-phase
	induction motor using embedded System.
TEPGED120,	AN ADAPTIVE IDENTIFICATION OF ROTOR TIME CONSTANT FOR SPEED-
TEMAED124	SENSOR LESS INDUCTION MOTOR DRIVES: A CASE STUDY FOR SIX-PHASE
	INDUCTION MACHINE
	Objective: The main objective of this paper is to provide a parallel
	estimation system of the rotor time constant and the rotor speed in
	sensor less IFOC of induction machine.
TEPGED28,	VARIABLE SPEED OPERATION OF BRUSHLESS DOUBLY-FED RELUCTANCE
TEMAED27	MACHINE DRIVE USING MODEL PREDICTIVE CURRENT CONTROL TECHNIQUE
	Objective: The main objective of this paper is to accomplish an accurate
	and fast drive control, model predictive control (MPC) is considered for
	variable speed operation of Brushless Doubly-Fed Reluctance Machine
	Drive.
TEPGED123,	MODEL PREDICTIVE DIRECT POWER CONTROL OF DOUBLY FED INDUCTION
	GENERATORS UNDER BALANCED AND UNBALANCED NETWORK CONDITIONS
TEMAED127,	
TEPGPS507,	Objective: The main objective of this paper is to control the power of high
TEMAPS541	performance DFIG under both balanced and unbalanced network.
TEPGED84	DEVELOPMENT OF AN ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR DRIVE
	Objective: The main objective of this paper is the bilateral DC/DC
	converter is used as an interface between the battery and the motor
	serveres le deux de an internade between the battery and the motor

	drive.
TEPGPS506, TEPGED116, TEMAPS540, TEMAED120 TEMAED81	DIRECT POWER CONTROL OF SHUNT ACTIVE POWER FILTER USING SPACE VECTOR MODULATION BASED ON SUPER TWISTING SLIDING MODE CONTROL Objective: The main objective of this paper is to compensate undesirable harmonic components caused by nonlinear loads. BATTERY AND SUPER CAPACITOR FED BLDC MOTOR DRIVE FOR ELECTRICAL VEHICLE APPLICATIONS Objective: The main objective of this paper is to run an electrical vehicle with help of Battery & super capacitor. And the motor used in EV are BLDC motor
TEPGED28, TEMAED27	VARIABLE SPEED OPERATION OF BRUSHLESS DOUBLY-FED RELUCTANCE MACHINE DRIVE USING MODEL PREDICTIVE CURRENT CONTROL TECHNIQUE Objective: The main objective of this paper is to accomplish an accurate and fast drive control, model predictive control (MPC) is considered for variable speed operation of Brushless Doubly-Fed Reluctance Machine Drive.
TEPGED125,TEPGPE167, TEMAED129,TEMAPE193	A FAULT TOLERANT FIVE-LEVEL INVERTER TOPOLOGY WITH REDUCED COMPONENT COUNT FOR OPEN-END IM DRIVES Objective: The main objective of this paper is to tolerate the faults and reduce the components count to run the drive applications without any interruptions.
TEMAED82	AN IMPROVED DIRECT TORQUE CONTROL OF THREE LEVEL DUAL INVERTER FED OPEN-ENDED WINDING INDUCTION MOTOR DRIVE BASED ON MODIFIED LOOK-UP TABLE Objective: The main objective of this paper is to nullify flux instability at zero speed, proper active vvs are placed at hysteresis flux +1 and torque 0 condition in modified look-up table.
TEMAED152, TEPGED146	PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL (DTC) FOR SYNCHRONOUS MACHINE PERMANENT MAGNET (PMSM) Objective: The main object of this project is direct torque control of permanent magnet synchronous machine.
TEPGPE70, TEMAPE84	CASCADED MULTILEVEL PV INVERTER WITH IMPROVED HARMONIC PERFORMANCE DURING POWER IMBALANCE BETWEEN POWER CELLS Objective: The main objective of this project is to mitigate voltage and current distortions by injecting power with lower voltage from the shaded cells without altering the PV voltage.
TEMAED30, TEPGED31	DIRECT INSTANTANEOUS TORQUE CONTROL OF THE SWITCHED RELUCTANCE MOTOR FOR ELECTRIC VEHICLES APPLICATIONS USING FUZZY LOGIC CONTROL Objective: The main objective of this project is to improve the motor performance and reduce the torque ripples compared to other

	techniques such as direct instantaneous torque control.
TEMAED83,	DYNAMIC IDENTIFICATION OF ROTOR MAGNETIC FLUX TORQUE AND ROTOR
TEPGED86	RESISTANCE OF INDUCTION MOTOR
	Objective: The main objective of this project is to improve the efficiency
	of induction motor during parameter variations and to identify and
	control the rotor parameters.
TEPGED64,	SOLAR POWERED BRUSHLESS DC MOTOR FOR WATER PUMPING SYSTEM
TEMAED62,	Objective: The main objective of this project is to gain the maximum
TEPGED85	benefits from solar source along with also gives soft starting of BLDC
	motor.

EEE ELECTRICAL IEEE TITLES - ELECTRIC VEHICLES		
TEMAED156, TEPGED150	A NEW MULTI-OUTPUT DC-DC CONVERTER FOR ELECTRIC VEHICLE APPLICATION Objective: The main objective of this project is to reduce the cross regulation problems by using A New Multi-Output DC-DC Converter for Electric Vehicle Application	
TEMAED157, TEPGED151	SOFT SWITCHING MULTIPHASE INTERLEAVED BOOST CONVERTER WITH HIGH VOLTAGE GAIN FOR EV APPLICATIONS Objective: The main objective of this project is to reduce the switching losses and improve the efficiency of the system by using Soft Switching Multiphase Interleaved Boost Converter with High Voltage Gain for EV.	
TEPGED90, TEMAED87	BIDIRECTIONAL POWER FLOW CONTROL INTEGRATED WITH PULSE AND SINUSOIDAL-RIPPLE-CURRENT CHARGING STRATEGIES FOR THREE-PHASE GRID-TIED CONVERTERS. Objective: The objective of this paper is to propose bidirectional charging/discharging strategies for three-phase grid-tied converters.	
TEPGED111, TEMAED114, TEMAPE186, TEPGPE160	VOLTAGE ORIENTED CONTROLLER BASED VIENNA RECTIFIER FOR ELECTRIC VEHICLE CHARGING STATIONS Objective: The objective of this paper is to ensure the good steady state performance and fast transient response of the Electric Vehicle Charging Stations by using Vienna Rectifiers.	
TEMAED132, TEMAPS549, TEPGED128, TEPGPS515	CONSTANT CURRENT FUZZY LOGIC CONTROLLER FOR GRID CONNECTED ELECTRIC VEHICLE CHARGING Objective: The objective of this paper is to reduce the charging time of the Electric vehicle without any obstacles.	
TEPGPE161 TEMAPE187 TEMAED113 TEPGED110	A MULTIFUNCTIONAL NON-ISOLATED DUAL INPUT DUAL OUTPUT CONVERTER FOR ELECTRIC VEHICLE APPLICATION Objective: The main objective of this project is to increase the efficiency by reducing switching losses and number of components.	

TEMAED121,	ROBUST CONTROL OF WINDING-BASED DC-BUS CAPACITOR DISCHARGE FOR
TEPGED117	PMSM DRIVES IN ELECTRIC VEHICLES
	Objective: The objective of this paper is to discharging the dc-bus
	capacitor voltage to safe voltage in the electric vehicles (evs) based PMSM
	drive system when evs encounter an emergency such as a crash even.
TEMAPS554,	ENERGY MANAGEMENT AND OPTIMIZATION OF VEHICLE-TO-GRID SYSTEMS FOR
TEMAED134,	WIND POWER INTEGRATION
TEPGPS520,	Objective: The objective of this paper is energy management between
TEPGED130	Electric Vehicle to grid system for wind power integration
TEMAED137,	WIRELESS ELECTRIC VEHICLE BATTERY CHARGING SYSTEM USING PV ARRAY
TEMAPS557	Objective: The objective of this paper is helps in identifying the operating
	frequency at which the resonance with unity voltage gain is achieved
	irrespective of load variations in Series-Series wireless power transmission
	systems.
TEMAED141,	ANALYSIS OF BIDIRECTIONAL DC-DC CONVERTER WITH WIDE VOLTAGE GAIN
TEMAPE198,	FOR CHARGING OF ELECTRIC VEHICLE
TEPGED135,	Objective: The main objective of this project is to provide high output
TEPGPE171	voltage for bidirectional dc-dc converter for charging of an Electric
	Vehicle.
TEMAED146,	OFF-BOARD ELECTRIC VEHICLE BATTERY CHARGER USING PV ARRAY
TEPGED140	Objective: The main objective of this project is to provide continuous power
	supply to charge the off board electric vehicle using PV array.
TEPGED91,	SOLAR POWERED UNMANNED AERIAL VEHICLE WITH ACTIVE OUTPUT FILTER
TEMAED88	UNDER NON-LINEAR LOAD CONDITIONS.
	Objective: The objective of this paper is to propose Active Output Filter
	system AOF reduces the size and weight of the power transmission system
	while significantly improving its conversion efficiency.
TEMAEDIII,	ADAPTIVE CURRENT CONTROL FOR A BI-DIRECTIONAL INTERLEAVED EV
TEPGED92	CHARGER WITH DISTURBANCE REJECTION.
	Objective: The main objective of this project is to maintain the stability, as
	well as the convergence of the controller
TEMAED90,TEPGED93	REACTIVE POWER COMPENSATION USING VEHICLE-TO GRID ENABLED
	BIDIRECTIONAL OFF-BOARD EV BATTERY CHARGER
	Objective: The main objective of this project is designed to provide reactive
	power compensation to the grid. However, to achieve uninterruptible
	reactive power compensation, the DC link voltage is regulated by EV
	batteries that affect its life. Moreover, it goes under more charging and
	discharging cycles that reduce battery life.
TEMAPE202,	A New Structure of Bidirectional DC-DC Converter for Electric Vehicle
TEMAED149,	Applications
TEPGPE175,TEPGED143	Objective: The main objective of this project is to develop a new structure

	of bidirectional DC-DC Converter for Electric Vehicle applications.
TEPGED142	AN ON-BOARD CHARGER INTEGRATED POWER CONVERTER FOR EV SWITCHED
	RELUCTANCE MOTOR DRIVES
	Objective: The main objective of this project is to improve the overall
	performance of the SRM drive of the Electric Vehicle
TEMAPE146,	ANALYSIS, MODELING AND IMPLEMENTATION OF A SWITCHING BI-DIRECTIONAL
TEPGPE122	BUCK-BOOST CONVERTER BASED ON ELECTRIC VEHICLE HYBRID ENERGY
	STORAGE FOR V2G SYSTEM
	Objective: The main objective of this project is to improve the stability of
	the hybrid battery energy storage system.
TEMAED143,	ELECTRICAL DESIGN OF A PHOTOVOLTAIC-GRID SYSTEM FOR ELECTRIC
TEPGED137	VEHICLES CHARGING STATION
	Objective: The main objective of this project is to provide continuous power
	supply to the charging stations without any power interruptions in the
	system.
TEMAPS427,	AN IMPLEMENTATION OF SOLAR PV ARRAY BASED MULTIFUNCTIONAL EV
TEPGPS400	CHARGER
	Objective: The main objective of this paper is to achieve Unity Power Factor
	(UPF) operation and Total Harmonic Distortion (THD) of the grid current
	within 5 percent.
TEMAPS432	DEVELOPMENT OF A HYBRID ENERGY STORAGE SYSTEM(HESS) FOR ELECTRIC
	AND HYBRID ELECTRIC VEHICLE
	Objective: The main objective of this paper is to examine the feasibility and
	capability of a Hybrid Energy Storage System (HESS), composed of battery
	and ultra-capacitor units, through simulation.
TEPGPS187,	MULTIMODE OPERATION OF SOLAR PV ARRAY, GRID, BATTERY AND DIESEL
TEMAPS226	GENERATOR SET BASED EV CHARGING STATION.
	Objective: The main objective of this paper is to provide continuous
	charging and uninterruptable supply to house loads. It will also regulate
	generator voltage and frequency, harmonic current compensation of non-
	linear loads and intentional reactive power compensation.
TEMAED131,	VEHICLE-TO-GRID ANCILLARY SERVICES USING SOLAR POWERED ELECTRIC
TEPGED127,	VEHICLE CHARGING STATIONS
TEMAPS548,	Objective: The main objective of this paper is to enhance the better
TEPGPS514	dynamic response of motor with less harmonic distortions and torque
	fluctuations.
TEPGED84	DEVELOPMENT OF AN ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR
	DRIVE
	Objective: The main objective of this paper is the bilateral DC/DC converter
TEDOD0107	is used as an interface between the battery and the motor drive.
TEPGPS187,	MULTIMODE OPERATION OF SOLAR PV ARRAY, GRID, BATTERY AND DIESEL
TEMAPS226	GENERATOR SET BASED EV CHARGING STATION

	Objective: The main objective of this paper is to provide continuous charging and uninterruptable supply to house loads. It will also regulate generator voltage and frequency, harmonic current compensation of non- linear loads and intentional reactive power compensation.
TEMAED133, TEPGED129	HIGH EFFICIENCY BRIDGELESS SINGLE-POWER-CONVERSION BATTERY CHARGER FOR LIGHT ELECTRIC VEHICLES Objective: The main objective of this paper is to reduce the conduction losses associated with the input diode rectifier and reduces the reverse- recovery losses of the output diodes by providing zero-current switching.
TEPGPS408	A MULTIFUNCTIONAL SOLAR PV AND GRID BASED ON BOARD CONVERTER FOR ELECTRIC VEHICLES Objective: The main objective of this paper is to charge of plug-in electric vehicles using dual power sources (grid and solar PV).
TEMAED93, TEPGED95	A NOVEL SINGLE PHASE BIDIRECTIONAL ELECTRIC DRIVE RECONSTRUCTED ONBOARD FOR ELECTRIC VEHICLES Objective: The main objective of this paper is to reconstructed converter is simple without specially designed motor.
TEMAED130, TEPGED126	AN APPROACH TOWARDS EXTREME FAST CHARGING STATION POWER DELIVERY FOR ELECTRIC VEHICLES WITH PARTIAL POWER PROCESSING Objective: The main objective of this paper is to eliminate redundant power conversion by making use of partial power rated dc-dc converters to charge the individual evs.
TEMAPE160	AN EFFECTIVE INDUCTIVE POWER TRANSFER TOPOLOGY FOR ELECTRIC VEHICLE BATTERY CHARGING Objective: The main objective of this paper is to improve the zero-voltage zero-current switching (ZVZCS) IPT topology and its switching pattern.
TEPGPS178, TEMAPS217	DESIGN AND DEVELOPMENT OF MODIFIED BL LUO CONVERTER FOR PQ IMPROVEMENT IN EV CHARGER Objective: The main objective of this paper is to improve the power quality by eliminating the input bridge and reducing the THD.

ACADEMIC PROJECTS:

Igeeks Technologies is a company located in Bangalore, India. We have been recognized as a quality provider of hardware and software solutions for the student's in order to carry out their academic Projects. We offer academic projects from more than 15+ years' experience in various academic levels ranging from graduates to masters (Diploma, BCA, BE, M. Tech, MCA, phd). As a part of the development training, we offer Projects in Embedded Systems & Software to the

Engineering College students in all major disciplines. Our Award Winning Tech Team have trained thousands of students and have guided over 8000+ working projects via Practical Research based Project training, out of which some of the projects have won best project awards at various national & international competitions and expos.

FACILITIES:

- Project base paper, synopsis
- In-depth training by industry experts
- Project guidance from experienced people
- Internship certificate.
- Crash courses for out station students
- On-line Project Execution
- Teamviewer/ Skype Support

INTERNSHIP:

Igeeks is India's no.1 internship platform with 44000+ internships in Engineering, MBA, Commerce & Management, and other streams. Igeeks is here to help bridge the gap between a students' classroom environment and their workplace atmosphere. Igeeks provide internship training on latest cutting edge technologies in the industry for easy placements of students. We provide handson experience on our real time projects to expose the students on the real world challenges and industry standards of implementing a project.

Our mentorship programs aim at sharpening your technical and non-technical concepts with a tint of theoretical understanding, draped with practical expertise to solve complex problems.

We are offering you the chance to Learn, Practice, and Clear Doubts from the best mentors in the industry.

Learn now: https://bit.ly/2Rq39hq Learn now: https://bit.ly/3iilyte Learn now:https://bit.ly/2Rlzshk

www.makefinalyearproject.com | www.igeekstechnologies.com

Email: nanduigeeks2010@gmail.com | Call & Whatsapp: +91 70192 80372